
DM811

Heuristics for Combinatorial Optimization

Lecture 6
TSP

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



TSP
Code Speed UpOutline

1. TSP

2. Code Speed Up

2



TSP
Code Speed UpOutline

1. TSP

2. Code Speed Up

4



TSP
Code Speed UpConstruction Heuristics

Construction heuristics specific for TSP
Heuristics that Grow Fragments

Nearest neighborhood heuristics
Double-Ended Nearest Neighbor heuristic
Multiple Fragment heuristic (aka, greedy heuristic)

Heuristics that Grow Tours
Nearest Addition
Farthest Addition
Random Addition

Clarke-Wright savings heuristic

Nearest Insertion
Farthest Insertion
Random Insertion

Heuristics based on Trees
Minimum spanning tree heuristic
Christofides’ heuristics
Fast recursive partitioning heuristic

5



TSP
Code Speed UpConstruction Heuristics for TSP

In geometric instances: NN < (dlogNe+1)
2 ·OPT

Double-Ended NN

6



TSP
Code Speed Up

Build(PtSet)
Perm[1]:=StartPt
DeletePt(Perm[1])
for i:=2 to N do

Perm[i]:=NN(Perm[i-1])
DeletePt(Perm[i])

7



TSP
Code Speed UpData Structures

8



TSP
Code Speed Up

Construction in O(n log n) time and O(n) space

Range search: reports the leaves from a split node.

Delete(PointNum) amortized constant time

NearestNeighbor(PointNum) bottom-up search
visit nodes + compute distances
A+BNC , A > 0, B < 0,−1 < C < 0 (expected constant time) if no
deletions happened and data uniform

FixedRadiusNearestNeighbor(PointNum, Radius, function)

BallSearch(PointNum, function) ball centered at point

SetRadius(PointNum, float Radius)

SphereOfInfluence(PointNum, float Radius) ball centered at
point with given radius 9



TSP
Code Speed UpConstruction Heuristics for TSP

O(
√
N) approximation

10



TSP
Code Speed Up

Array Degree num. of tour edges

K-d tree for nearest neighbor searching (only eligible nodes)

Array NNLink containing index to nearest neighbor of i not in the
fragment of i

Priority queue (heap) with nearest neighbor links

Array Tail link to the other tail of current fragments.

11



TSP
Code Speed UpImportant Elements

Exploit the locality inherent in the problem to solve it (NN search,
Fixed-radius search, ball search)

Search time modelled by a function A+BNC

Number of searches

Priority queue of links to nearest neighbors

12



TSP
Code Speed UpAddition Heuristics

Tour maintained as a doubly-linked list

13



TSP
Code Speed UpAddition Heuristics

14



TSP
Code Speed UpAddition Heuristics

15



TSP
Code Speed UpInsertion Heuristics

Motivation:

16



TSP
Code Speed Up

Theorem
Y not yet in tour
C nearest neighbor of Y
D neighbor of C in tour that minimize C(Y,CD)
The tour edges with minimal expansion is:

the nearest neigbhor edge CD
the edge AB such that A is in NNBall(Y, 1.5 · emin), emin shorest edge
from Y
the edge AB such that Y is in SphereOfInfluence(A, 1.5 · emax),
emax longest edge from A scale 1.5

Proof: C(Y,CD) ≤ 2D(Y,C)

17



TSP
Code Speed UpConstruction Heuristics for TSP

MST ≤ 2 ·OPT

18



TSP
Code Speed UpConstruction Heuristics for TSP

CH ≤ 3
2 ·OPT tight and best known

19



TSP
Code Speed UpComplete Algorithms and Lower Bounds

Reference Results

Branch & cut algorithms (Concorde: http://www.tsp.gatech.edu/)
cutting planes + branching
use LP-relaxation for lower bounding schemes
effective heuristics for upper bounds

Solution times with Concorde
Instance No. nodes CPU time (secs)
att532 7 109.52
rat783 1 37.88
pcb1173 19 468.27
fl1577 7 6705.04
d2105 169 11179253.91
pr2392 1 116.86
rl5934 205 588936.85
usa13509 9539 ca. 4 years
d15112 164569 ca. 22 years
s24978 167263 84.8 CPU years

Lower bounds: (within less than one percent of optimum for random
Euclidean, up to two percent for TSPLIB instances)

20



TSP
Code Speed UpOutline

1. TSP

2. Code Speed Up

21



TSP
Code Speed UpWhere do speedups come from?

Where can maximum speedup be achieved?
How much speedup should you expect?

22



TSP
Code Speed UpCode Tuning

Caution: proceed carefully! Let the optimizing compiler do its work!

optimizing flags (C++ -O3, java http://java.sun.com/developer/
onlineTraining/Programming/JDCBook/perfTech.html)

just-in-time-compilation: it converts code at runtime prior to executing it
natively, for example bytecode into native machine code. (in java done by
deafult – to disable -Djava.compiler=NONE – in C++ possible via
llvm-g++
http://vmakarov.fedorapeople.org/spec/2011/llvmgcc64.html)

Cache aware (-m32 vs -m64)

Profiling (java: java -Xrunhprof:cpu=times prog information on the
time spent in each method of the program written to java.hprof.txt.
C++: gprof, instruments, http://visualvm.java.net/)

23

http://java.sun.com/developer/onlineTraining/Programming/JDCBook/perfTech.html
http://java.sun.com/developer/onlineTraining/Programming/JDCBook/perfTech.html
http://vmakarov.fedorapeople.org/spec/2011/llvmgcc64.html
http://visualvm.java.net/


TSP
Code Speed Up

Expression Rules: Recode for smaller instruction counts.

Loop and procedure rules: Recode to avoid loop or procedure call
overhead.

Hidden costs of high-level languages

String comparisons in C: proportional to length of the string, not
constant

Object construction / de-allocation: very expensive

Matrix access: row-major order 6= column-major order

Exploit algebraic identities

Avoid unnecessary computations inside the loops

24



TSP
Code Speed UpWhere Speedups Come From?

McGeoch reports conventional wisdom, based on studies in the literature.

Concurrency is tricky: bad -7x to good 500x
Classic algorithms: to 1trillion and beyond
Data-aware: up to 100x
Memory-aware: up to 20x
Algorithm tricks: up to 200x
Code tuning: up to 10x
Change platforms: up to 10x

25



TSP
Code Speed UpIn Optimization

In IP
bounding and cutting techniques

CP solvers
filtering techniques

LS solvers
moves and incremental evaluation machinery

26



TSP
Code Speed UpRelevant Literature

Bentley, Writing Efficient Programs; Programming Pearls (Chapter 8
Code Tuning)

Kernighan and Pike, The Practice of Programming (Chapter 7
Performance).
Shirazi, Java Performance Tuning, O’Reilly

McCluskey, Thirty ways to improve the performance of your Java
program. Manuscript and website: www.glenmccl.com/jperf

Randal E. Bryant e David R. O’Hallaron: Computer Systems: A
Programmer’s Perspective, Prentice Hall, 2003, (Chapter 5)

27

www.glenmccl.com/jperf

	TSP
	Code Speed Up

