
DM811

Heuristics for Combinatorial Optimization

Lecture 7
Local Search

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Local SearchCourse Overview

4 Combinatorial Optimization, Methods and Models

4 CH and LS: overview

4 Working Environment and Solver Systems

4 Methods for the Analysis of Experimental Results

4 Construction Heuristics

Local Search: Components, Basic Algorithms

Local Search: Neighborhoods

Efficient Local Search: Incremental Updates and Neighborhood Pruning

Stochastic Local Search & Metaheuristics

Configuration Tools: F-race

Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
p-median, set covering

3

DM811

Heuristics for Combinatorial Optimization

Lecture 7
Local Search

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Local SearchOutline

1. Local Search
Components

5

Local SearchLocal Search Algorithms

Given a (combinatorial) optimization problem Π and one of its instances π:

search space S(π)
specified by candidate solution representation:
discrete structures: sequences, permutations, graphs, partitions
(e.g., for SAT: array, sequence of all truth assignments
to propositional variables)

Note: solution set S′(π) ⊆ S(π)
(e.g., for SAT: models of given formula)

evaluation function fπ : S(π)→ R
(e.g., for SAT: number of false clauses)

neighborhood function, Nπ : S → 2S(π)

(e.g., for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)

8

Local SearchLocal search — global view

c

s
vertices: candidate solutions
(search positions)

vertex labels: evaluation function

edges: connect “neighboring”
positions

s: (optimal) solution

c: current search position

9

Local SearchIterative Improvement

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s′ of s such that f(s′) < f(s)
s := s′

If more than one neighbor have better cost then need to choose one
 pivot rule

The procedure ends in a local optimum ŝ:
Def.: Local optimum ŝ w.r.t. N if f(ŝ) ≤ f(s) ∀s ∈ N(ŝ)

Issue: how to avoid getting trapped in bad local optima?
use more complex neighborhood functions
restart
allow non-improving moves

10

Local SearchLocal Search Algorithm
Further components [according to B4]

set of memory states M(π)
(may consist of a single state, for LS algorithms that
do not use memory)

initialization function init : ∅ → S(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over initial
search positions and memory states)

step function step : S(π)×M(π)→ S(π)×M(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over
subsequent, neighboring search positions and memory states)

termination predicate terminate : S(π)×M(π)→ {>,⊥}
(determines the termination state for each
search position and memory state)

11

Local SearchDecision vs Minimization

LS-Decision(π)
input: problem instance π ∈ Π
output: solution s ∈ S′(π) or ∅
(s,m) := init(π)

while not terminate(π, s, m) do
(s,m) := step(π, s, m)

if s ∈ S′(π) then
return s

else
return ∅

LS-Minimization(π′)
input: problem instance π′ ∈ Π′

output: solution s ∈ S′(π′) or ∅
(s,m) := init(π′);
sb := s;
while not terminate(π′, s, m) do

(s,m) := step(π′, s, m);
if f(π′, s) < f(π′, ŝ) then

sb := s;

if sb ∈ S′(π′) then
return sb

else
return ∅

12

Local Search

Example: Uninformed random walk for SAT (1)

search space S: set of all truth assignments to variables
in given formula F
(solution set S′: set of all models of F)

neighborhood relation N : 1-flip neighborhood, i.e., assignments are
neighbors under N iff they differ in
the truth value of exactly one variable

evaluation function not used, or f(s) = 0 if model f(s) = 1 otherwise

memory: not used, i.e., M := {0}

13

Local Search

Example: Uninformed random walk for SAT (2)

initialization: uniform random choice from S, i.e.,
init(, {a′,m}) := 1/|S| for all assignments a′ and
memory states m

step function: uniform random choice from current neighborhood, i.e.,
step({a,m}, {a′,m}) := 1/|N(a)|
for all assignments a and memory states m,
where N(a) := {a′ ∈ S | N (a, a′)} is the set of
all neighbors of a.

termination: when model is found, i.e.,
terminate({a,m}, {>}) := 1 if a is a model of F , and 0 otherwise.

14

Local SearchIn Comet
Random Walk

queensLS0a.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
select(q in Size, v in Size) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations() <<endl;

}
it = it + 1;

}
cout << queen << endl;� �

15

Local SearchIn Comet
Another Random Walk

queensLS1.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
select(q in Size : S.violations(queen[q])>0, v in Size) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations()<<endl;

}
it = it + 1;

}
cout << queen << endl;� �

16

Local SearchSummary: Local Search Algorithms
(as in [Hoos, Stützle, 2005])

For given problem instance π:

1. search space S(π)

2. neighborhood relation N (π) ⊆ S(π)× S(π)

3. evaluation function f(π) : S → R

4. set of memory states M(π)

5. initialization function init : ∅ → S(π)×M(π))

6. step function step : S(π)×M(π)→ S(π)×M(π)

7. termination predicate terminate : S(π)×M(π)→ {>,⊥}

17

	Local Search
	Components

