DM811

Heuristics for Combinatorial Optimization

Lecture 8

Local Search (cntd.)

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Summary: Local Search Algorithms Local Saarch Revisiced
(as in [Hoos, Stiitzle, 2005])

For given problem instance 7:

1. search space S,

2. evaluation function f, : S —+ R

3. neighborhood relation ; C S, x S,

4. set of memory states M,

5. initialization function init :) — S, x M)
6. step function step: S; x M, — S, x M,

7. termination predicate terminate : S; x M, — {T, L}

Local Search Revisited

Outline Basic Algorithms

1. Local Search Revisited
Components

LS Algorithm Components Local Search Reviseed

Search space

Search Space

Defined by the solution representation:

@ permutations

o linear (scheduling)
o circular (TSP)

@ arrays (assignment problems: GCP)

@ sets or lists (partition problems: graph partitioning, max indep. set)

LS Algorithm Components Local Search Revisited

Basic Algorithms
Evaluation function

Evaluation (or cost) function:

o function [, : S, — Q that maps candidate solutions of
a given problem instance 7 onto rational numbers (most often integer),
such that global optima correspond to solutions of 7;

@ used for assessing or ranking neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:
o Evaluation function: part of LS algorithm.
o Objective function: integral part of optimization problem.

@ Some LS methods use evaluation functions different from given objective
function (e.g., guided local search).

Local Search Revisited

Constrained Optimization Problems

Constrained Optimization Problems exhibit two issues:

o feasibility
eg, treveling salesman problem with time windows: customers must be
visited within their time window.

@ optimization
minimize the total tour.

How to combine them in local search?

@ sequence of feasibility problems
@ staying in the space of feasible candidate solutions

o considering feasible and infeasible configurations

Constraint-based local search Local Search Revisited
From [B3]

If infeasible solutions are allowed, we count violations of constraints.

What is a violation?
Constraint specific:

@ decomposition-based violations
number of violated constraints, eg: alldiff

@ variable-based violations
min number of variables that must be changed to satisfy c.

@ value-based violations
for constraints on number of occurences of values

@ arithmetic violations

@ combinations of these

Constraint-based local search Local Search Revisited

Basic Algorithms
From [B3]

Combinatorial constraints

@ alldiff(z,...,x,):
Let a be an assignment with values V' = {a(xy),...,a(x,)} and

¢y = #4(v, x) be the number of variables with the same value.
Possible definitions for violations are:

viol = >~ o, I(max{c, — 1,0} > 0) value-based

viol = maxyey max{c, — 1,0} value-based

viol = 3 -, max{c, — 1,0} value-based

variables with same value, variable-based, here leads to same
definitions as previous three

Arithmetic constraints

o [<7~ viol = max{l —r,0}
o l=r~viol=|l—7r|

o [#r~>viol=1if [l =r, 0 otherwise

LS Algorithm Components Local Search Reviseed
Neighborhood function

Neighborhood function
Also defined as: N : S xS — {T,F}or N C S xS

@ neighborhood (set) of candidate solution s: N(s) := {s' € S| NV(s,s')}
@ neighborhood size is | N (s)|
@ neighborhood is symmetric if: s € N(s) = s € N(s')

@ neighborhood graph of (S, N,) is a directed graph: G, := (V, A)
with V' = S, and (uwv) € A< v e N(u)
(if symmetric neighborhood ~~ undirected graph)

Notation: N when set, A/ when collection of sets or function

10

Local Search Revisited
Basic Algorithms

A neighborhood function is also defined by means of an operator.

An operator A is a collection of operator functions ¢ : S — S such that

sseN(s) = 3JdeAdis)=+

Definition

k-exchange neighborhood: candidate solutions s, s” are neighbors iff s differs
from s’ in at most k solution components

Examples:

o l-exchange (flip) neighborhood for SAT
(solution components = single variable assignments)

@ 2-exchange neighborhood for TSP
(solution components = edges in given graph)

11

Local Search Revisited

LS Algorithm Components Basic Algorithme

Definition:

@ Local minimum: search position without improving neighbors wrt given
evaluation function f and neighborhood A/,
i.e., position s € S such that f(s) < f(s') for all s € N(s).

@ Strict local minimum: search position s € S such that
f(s) < f(s') forall s € N(s).

o Local maxima and strict local maxima: defined analogously.

12

Local Search Revisited

LS Algorithm Components Basic Algorithme

Note:
o Local search implements a walk through the neighborhood graph

o Procedural versions of init, step and terminate implement sampling
from respective probability distributions.

@ Local search algorithms can be described as Markov processes:
behavior in any search state {s,m} depends only
on current position s
higher order MP if (limited) memory m.

13

LS Algorithm Components Local Search Revisited

Step function

Search step (or move):

pair of search positions s, s’ for which

s’ can be reached from s in one step, i.e., N(s,s’) and
step({s,m}, {s’,m'}) > 0 for some memory states m,m’ € M.

@ Search trajectory: finite sequence of search positions < s, s, ..., 8 >
such that (s;_1,s;) is a search step for any i € {1,... k}
and the probability of initializing the search at s
is greater than zero, i.e., init({sg,m}) >0
for some memory state m € M.

o Search strategy: specified by init and step function; to some extent
independent of problem instance and other components of LS algorithm.
o random

o based on evaluation function
o based on memory

14

Outline

2. Basic Algorithms

Local Search Revisited
Basic Algorithms

15

Local Search Revisited

Iterative Improvement Basic Algerithms

@ does not use memory
@ init: uniform random choice from S or construction heuristic

@ step: uniform random choice from improving neighbors

Pr(s,s') = {1/|I(S)| if s' € I(s)

0 otherwise
where I(s) :={s' € S| N(s,s') and f(s") < f(s)}
@ terminates when no improving neighbor available

Note: Iterative improvement is also known as iterative descent or
hill-climbing.

16

Iterative Improvement (cntd) b Sy

Pivoting rule decides which neighbors go in I(s)

@ Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbors,
ie, I(s):={s" € N(s)| f(s') =g*},
where ¢* := min{f(s') | s € N(s)}.

Note: Requires evaluation of all neighbors in each step!

@ First Improvement: Evaluate neighbors in fixed order,
choose first improving one encountered.

Note: Can be more efficient than Best Improvement but not in the worst
case; order of evaluation can impact performance.

17

Local Search Revisited

Examples Baric Algorichrms

Iterative Improvement for SAT

@ search space S: set of all truth assignments to variables in given formula F’
(solution set S’: set of all models of F)

@ neighborhood relation \: 1-flip neighborhood
@ memory: not used, i.e., M := {0}

@ initialization: uniform random choice from S, i.e., init((),{a}) := 1/|S] for
all assignments a

o evaluation function: f(a) := number of clauses in F'
that are unsatisfied under assignment a
(Note: f(a) = 0 iff a is a model of F.)

@ step function: uniform random choice from improving neighbors, i.e.,
step(a,a’) := 1/|I(a)| if a’ € I(a),
and 0 otherwise, where 7(a) := {a’ | N'(a,a’) A f(a') < f(a)}

@ termination: when no improving neighbor is available
i.e., terminate(a, T):=1if I(a) = (), and 0 otherwise.

18

Examples

Random order first improvement for SAT

URW-for-SAT(F,maxSteps)
input: propositional formula F', integer maxSteps
output: a model for ' or ()

choose assignment ¢ of truth values to all variables in F’
uniformly at random;
steps := 0;
while —(satisfies F') and (steps < maxSteps) do
select = uniformly at random from {z/|2’ is a variable in F’ and
changing value of 2’ in ¢ decreases the number of unsatisfied clauses}
steps := steps+1;
if ¢ satisfies /' then
| return ¢
else
L return

Local Search Revisited
Basic Algorithms

19

I n Comet II;Z:?:I SAEIZ;crli—‘thR;:iSitEd

Iterative Improvement

queensLS00.co

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size] (m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent (queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
select(q in Size, v in Size : S.getAssignDelta(queen[ql,v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<y<<" viol: "<<S.violations()
}
it = it + 1;
}

cout << queen << endl;

<<endl;

20

I n Comet II;Z:?:I SAEIZ;crli—‘thR;:iSitEd

Best Improvement

queensLS0.co

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size] (m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent (queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
selectMin(q in Size,v in Size) (S.getAssignDelta(queen[ql,v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<qg<<"] := "<<y<<" viol: "<<S.violations()
}
it = it + 1;
}

cout << queen << endl;

<<endl;

21

I n Comet II;Z:?:I SAEIZ;crli—‘thR;:iSitEd

First Improvement

queensLS2.co

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size] (m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent (queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
selectFirst(q in Size, v in Size: S.getAssignDelta(queen([ql,v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations() <<endl;
}
it = it + 1;
}

cout << queen << endl;

22

In Comet II;Z:?:I SAEIZ;crli—‘thR;:iSitEd
Min Conflict Heuristic

queensLSO0b.co

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent (queen));
S.post(alldifferent(all(i in Size) queen[i]l + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
select(q in Size : S.violations(queen[q])>0) {
selectMin(v in Size) (S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations() <<endl;
}
it = it + 1;
}
}

cout << queen << endl;

23

In Comet

General procedure

Local Search Revisited

Basic Algorithms

queensLS-generic.co

function void conflictSearch (Constraint<LS> c, int itLimit) {
int it = 0;
var{int}[] x = c.getVariables();
range Size = x.getRange();
while (!c.isTrue() && it < itLimit) {
selectMax(i in Size) (c.violations(x[i]))
selectMin(v in x[i].getDomain()) (c.getAssignDelta(x[i],v))
x[i] := v;
it = it + 1;

}

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen([Size] (m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

conflictSearch(S,50%n) ;
cout << queen << endl;

24

Exa m pleS: TS P Basic Algorithms

Random-order first improvement for the TSP

(]

]

]

(]

(4]

search space: Hamiltonian cycles in ;

neighborhood relation N: standard 2-exchange neighborhood

Initialization:

search position := fixed canonical tour < vi,vs,...,v,,v1 >
P := random permutation of {1,2,...,n}

Search steps: determined using first improvement
w.r.t. f(s) = cost of tour s, evaluating neighbors
in order of P (does not change throughout search)

Termination: when no improving search step possible
(local minimum)

26

Local Search Revisited

Examples: TSP Basic Algorithims

Iterative Improvement for TSP

TSP-20pt-first(s)
input: an initial candidate tour s € S(€)
output: a local optimum s € S,

fori=1ton—1do
for j =i+ 1tondo

if Pli]+ 1= P[j] or P[j]+ 1= P[i] then continue

if Pli]+1>nor P[j|+1>n then continue
Aij = d(mpu, 7)) + A(TP+1, TR4)+

—d(mpp), Tp+1) — AP, TR+

if A;; <0 then

| UpdateTour(s,1, j)

is it really?

27

	Local Search Revisited
	Components

	Basic Algorithms

