
DM826 – Spring 2012

Modeling and Solving Constrained Optimization Problems

Exercises
Set Variables

SONET Problem

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Partly based on slides by Stefano Gualandi, Politecnico di Milano]

Sonet problem

Optical fiber network design

Sonet problem

Input: weighted undirected demand graph G = (N,E ; d), where each node
u ∈ N represents a client and weighted edges (u, v) ∈ E correspond to traffic
demands of a pair of clients.

Two nodes can communicate, only if they join the same ring; nodes may join
more than one ring. We must respect:

maximum number of rings r
maximum number of clients per ring a
maximum bandwidth capacity of each ring c

Task: find a topology that minimizes the sum, over all rings, of the number
of nodes that join each ring while clients’ traffic demands are met.

2

Sonet problem

Sonet problem

A solution of the SONET problem is an assignment of rings to nodes and of
capacity to demands such that
1. all demands of each client pairs are satisfied;
2. the ring traffic does not exceed the bandwidth capacity;
3. at most r rings are used;
4. at most a ADMs on each ring;
5. the total number of ADMs used is minimized.

3

Sonet: variables

Set variable Xi represents the set of nodes assigned to ring i

Set variable Yu represents the set of rings assigned to node u

Integer variable Zie represents the amount of bandwidth assigned to
demand pair e on ring i .

4

Sonet: model

min
∑
i∈R

|Xi |

s.t. |Yu ∩ Yv | ≥ 1, ∀(u, v) ∈ E ,

Zie ∈ {0, d(e)}, ∀e ∈ E ,

Zi,(u,v) > 0 ⇐⇒ i ∈ (Yu ∩ Yv), ∀i ∈ R, (u, v) ∈ E ,

u ∈ Xi ⇔ i ∈ Yu, ∀ ∈ R, u ∈ N,

|Xi | ≤ a, ∀i ∈ R∑
e∈E

Zie ≤ c , ∀i ∈ R.

Xi � Xj , ∀i , j ∈ R : i < j .

5

� �
from numpy import *
from gecode import *
Rings = range(4) # upper bound for amount of rings
Nodes = range(5) # amount of clients
demand = array([[0,1,0,1,1],

[1,0,1,0,0],
[0,1,0,0,1],
[1,0,0,0,0],
[1,0,1,0,0]])

capacity = [3,2,2,3] # capacity in nodes of possible rings

X = map(lambda r: m.setvar(intset(),0,len(Nodes),0,capacity[r]),Rings) #nodes for r
Y = m.setvars(len(Nodes),intset(),0,len(Rings),0,len(Rings)) # rings for u

at least two nodes in each ring
for r in Rings:

cardinality(X[r], IRT_NQ, 1) # implied constraint

for (n1,n2) in combinations(Nodes,2):
IntVar z(intset(),0,4,1,len(Rings));
if demand[n1,n2]==1:

rel(Y[n1], SOT_INTER, Y[n2], SRT_SUP, z)

channel(X,Y)

IntVarArray z(len(Rings),)
for r in Rings:

cardinality(X[r],z[r])

IntVar adm(0,len(Rings)*len(Nodes)
linear(z, IRT_EQ, adm)� �

Once a variable X[i] has been chosen, we first try to include the node that
has the most communication with the nodes already placed in ring i ,� �
while (!and(i in Rings)(X[i].bound())) {
selectMin (i in Rings: !X[i].bound())(X[i].getCardinalityVariable().getSize()) {
set{int} S = X[i].getPossibleSet();
set{int} R = X[i].getRequiredSet();
Solver<CP> cp = X[i].getSolver();
selectMax (e in S: !R.contains(e))(sum(n in R)(demand[e,n])) {
try<cp> cp.requires(nodesInRing[i],e); | cp.excludes(nodesInRing[i],e);

}� �

References

8

