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Global variables: complex variable types representing combinatorial structures
in which problems find their most natural formulation

Eg:
sets, multisets, strings, functions, graphs
bin packing, set partitioning, mapping problems

We will see:
Set variables

Graph variables
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A finite-domain integer variable takes values from a finite set of integers.

A finite-domain set variable takes values from the power set of a finite
set of integers.
Eg.:
domain of x is the set of subsets of {1, 2, 3}:

{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
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Recall the shift-assignment problem

We have a lower and an upper bound on the number of shifts that each
worker is to staff (symmetric cardinality constraint)

one variable for each worker that takes as value the set of shifts covererd
by the worker.  exponential number of values

set variables with domain D(x) = [lb(x), ub(x)]
D(x) consists of only two sets:

lb(x) mandatory elements
ub(x) \ lb(x) of possible elements

The value assigned to x should be a set s(x) such that
lb ⊆ s(x) ⊆ ub(x)

In practice good to keep dual views with channelling
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Example:

domain of x is the set of subsets of {1, 2, 3}:

{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

can be represented in space-efficient way by:

[{}..{1, 2, 3}]

The representation is however an approximation!

Example:

domain of x is the set of subsets of {1, 2, 3}:

{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}

cannot be captured exactly by an interval. The closest interval would be still:

[{}..{1, 2, 3}]

 we store additionally cardinality bounds: #[i ..j ]
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Definition

set variable is a variable with domain D(x) = [lb(x), ub(x)]
D(x) consists of only two sets:

lb(x) mandatory elements (intersection of all subsets)
ub(x) \ lb(x) of possible elements (union of all subsets)

The value assigned to x must be a set s(x) such that lb ⊆ s(x) ⊆ ub(x)

We are not interested in domain consistency but in bound consistency:

Enforcing bound consistency

A bound consistency for a constraint C defined on a set variable x requires
that we:

Remove a value v from ub(x) if there is no solution to C in which
v ∈ s(x).
Include a value v ∈ ub(x) in lb(x) if in all solutions to C , v ∈ s(x).
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#include <gecode/set.hh>
SetVar(Space home, int glbMin, int glbMax, int lubMin, int lubMax, int cardMin=MIN,

int cardMax=MAX);� �� �
SetVar A(home, 0, 1, 0, 5, 3, 3);
cout << A: {0,1}..{0..5}#(3) // prints a set variable� �� �
A.glbSize(); 2 // num. of elements in the greatest lower bound
A.glbMin(); 0 // minimum element of greatest lower bound
A.glbMax(); 1 // maximum of greatest lower bound
for (SetVarGlbValues i(x); i(); ++i) cout << i.val() << ’ ’;
for (SetVarGlbRanges i(x); i(); ++i) cout << i.min() << ".." << i.max();

A.lubSize(): 6 // num. of elements in the least upper bound
A.lubMin(): 0 // minimum element of least upper bound
A.lubMax(): 5 // maximum element of least upper bound
for (SetVarLubValues i(x); i(); ++i) cout << i.val() << ’ ’;
for (SetVarLubRanges i(x); i(); ++i) cout << i.min() << ".." << i.max();

A.unknownSize(): 4 // num. of unknown elements (elements in lub but not in glb)
for (SetVarUnknownValues i(x); i(); ++i) cout << i.val() << ’ ’;
for (SetVarUnknownRanges i(x); i(); ++i) cout << i.min() << ".." <<i.max();

A.cardMin(): 3 // cardinality minimum
A.cardMax(): 3 // cardinality maximum� � 9
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� �
SetVar(home, IntSet glb, int lubMin, int lubMax, int cardMin=MIN, int cardMax=MAX)� �� �
SetVar A(home, intset(), 0, 5, 0, 4)� �� �
cout << A;
A.glbSize(): 0 // num. of elements in the greatest lower bound
A.glbMin(): 1073741823 // minimum element of greatest lower bound
A.glbMax(): −1073741823 // maximum of greatest lower bound

A.lubSize(): 6 // num. of elements in the least upper bound
A.lubMin(): 0 // minimum element of least upper bound
A.lubMax(): 5 // maximum element of least upper bound

A.unknownSize)(): 6 // num. of unknown elements (elements in lub but not in glb)

A.cardMin(): 0 // cardinality minimum
A.cardMax(): 4 // cardinality maximum� �
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� �
SetVar(home, int glbMin, int glbMax, IntSet lub, int cardMin=MIN, int cardMax=MAX)� �� �
A.SetVar(1, 3, IntSet({ {1,4}, {8,12} }), 2, 4)� �� �
cout << A;
A.glbSize(A): 3 // num. of elements in the greatest lower bound
A.glbMin(A): 1 // minimum element of greatest lower bound
A.glbMax(A): 3 // maximum of greatest lower bound

A.lubSize(A): 9 // nuA. of elements in the least upper bound
A.lubMin(A): 1 // minimum element of least upper bound
A.lubMax(A): 12 // maximum element of least upper bound

// A.unknownValues(A): [4, 8, 9, 10, 11, 12]
A.unknownSize)(A): 6 // num. of unknown elements (elements in lub but not in glb)
// A.unknownRanges(A): [(4, 4), (8, 12)]

A.cardMin(A): 3 // cardinality minimum
A.cardMax(A): 4 // cardinality maximum� �
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Find a schedule for a golf tournament:

g · s golfers

who want to play a tournament in g groups of s golfers each over w
weeks

such that no two golfers play against each other more than once during
the tournament.

A solution for the instance w = 4, g = 3, s = 3
(players are numbered from 0 to 8)
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w = 4;
g = 3;
s = 3;

golfers = g ∗ s;
Golfer = range(golfers)

m=space()

assign = m.intvars(len(Golfer)∗w, intset(range(g)))
assignM = Matrix(len(Golfer), w, assign)

# C1: Each group has exactly groupSize players
for gr in range(g):

for wk in range(w):
tmp=m.boolvars(golfers)
for gl in Golfer:

m.rel(assignM[gl,wk], IRT_EQ, gr, tmp[gl])
m.linear(tmp, IRT_EQ, s)

c=[]
for i in range(g):

c.append(intset(s,s))

for wk in range(w):
m.count(assignM.col(wk), c, ICL_DOM)

# C2: Each pair of players only meets once
for g1,g2 in combinations(Golfer, 2):

a=m.boolvars(w)
for wk1 in range(w):

m.rel(assignM[g1,wk1],IRT_EQ,assignM[g2,wk1],a[wk1])
m.linear(a,IRT_EQ,1)

m.branch(assign,INT_VAR_SIZE_MIN,INT_VAL_MIN)� �
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Array of set variables:� �
SetVarArray(home, int N, ...)
SetVarArray groups(g∗w, IntSet(), 0, g∗s−1, s, s)� �

size g · w , where each group can contain the players [0..g · s − 1] and has
cardinality s� �

int w = 4;
int g = 3;
int s = 3;

int golfers = g ∗ s;

SetVarArray groups(g∗w, IntSet(), 0, g∗s−1, s, s)� �
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Domain constraints

� �
dom(x, SRT_SUB, 1, 10);
dom(x, SRT_SUP, 1, 3);
dom(y, SRT_DISJ, IntSet(4, 6));� �
� �
cardinality(x, 3, 5);� �
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Relation constraints

� �
Space.rel(x, SRT_SUB, y)� �� �
Space.rel( x, IRT_GR, y)� �
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Set operations

� �
Space.rel(x, SOT_UNION, y, SRT_EQ, z)� �� �
Space.rel(SOT_UNION, x, y)� �

23



Set Variables
Graph Variables
Float VariablesConstraints on FS variables

Element

� �
element(x, y, z)� �

for an array of set variables or constants x ,
an integer variable y ,
and a set variable z .

It constrains z to be the element of array x at index y (where the index starts
at 0).

Example

element([{{1,2,3},{2,3},{3,4}},{{2,3},{2}},{{1,4},{3,4},{3}}], 3, z) => z={{1,4},{3,4},{3}}
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Set Global Cardinality

bounds the minimum and maximum number of occurrences of an element in
an array of set variables:

∀v ∈ U : lv ≤ |Sv | ≤ uv

where Sv is the set of set variables that contain the element v , i.e.,
Sv = {s ∈ S : v ∈ s}

(not present in gecode)
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Set Global Cardinality

Bessiere et al. [2004]
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Constraints connecting set and integer variables

the integer variable y is equal to the cardinality of the set variable x.� �
Space.cardinality(x, y);� �

Minimal and maximal elements of a set:� �
Space.min(x, y);� �

Weighted sets: assigns a weight to each possible element of a set variable x ,
and then constrains an integer variable y to be the sum of the weights of the
elements of x� �

e = [6, 1, 3, 4, 5, 7, 9]
w = [6, −1, 4, 1, 1, 3, 3]
Space.weights(e, w, x, y)� �

enforces that x is a subset of {1, 3, 4, 5, 7, 9} (the set of elements), and that
y is the sum of the weights of the elements in x , where the weight of the
element 1 would be −1, the weight of 3 would be 4 and so on.
Eg. Assigning x to the set {3, 7, 9} would therefore result in y be set to
4+ 3+ 3 = 10
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Channeling constraints

X an array of integer variables,
SA an array of set variables� �

channel(home, X, SA)� �
Xi = j ⇐⇒ i ∈ SAj 0 ≤ i , j < |X |

SAi = s ⇐⇒ ∀j ∈ s : Xj = i

Example

SA = [{1,2},{3}]
X = [1,1,2]

28



Set Variables
Graph Variables
Float VariablesConstraints on FS variables

Channeling constraints

an array of Boolean variables X
set variable S� �

channel(home, X, S)� �
Xi = 1⇐⇒ i ∈ S 0 ≤ i < |X |

Example

S = {1,2}
X = [1,1,0]
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Channeling constraints

An array of integer variables ~x
a set variable S :� �

rel(home, SOT_UNION, x, S)� �
constrains S to be the set {x0, . . . , x|x|−1}� �

channelSorted(home, x, S);� �
constrains S to be the set {x0, . . . , x|x|−1}, and the integer variables in ~x to
be sorted in increasing order (xi < xi+1 for 0 ≤ i < |x |)

Example

rel(home, SOT_UNION, [3,6,2,1], {1,2,3,6})
channelSorted(home, [1,2,3,6], {1,2,3,6})
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Channeling constraints

SA1 and SA2 two arrays of set variables� �
channel(home, SA1, SA2)� �

SA1[i ] = s ⇐⇒ ∀j ∈ s : i ∈ SA2[j ] SA1[i ] = {j | SA2[j ] contains i}
SA2[j ] = {i | SA1[i ] contains j}

Example

SA1 = [{1,2},{3},{1,2}]
SA2 = [{1,3},{1,3},{2}]
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Convexity

set variable S :� �
convex(home, S)� �

The convex hull of a set S is the smallest convex set containing S� �
convex(home, S1, S2)� �

enforces that the set variable S2 is the convex hull of the set variable S1.

Example

S={{1,2,5,6,7},{2,3,4},{3,5}} convex(S)={2,3,4}
convex({1,2,5,6,7},{1,2,3,4,5,6,7})
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Sequence constraints

enforce an order among an array of set variables x� �
Space.sequence(x)� �

sets x being pairwise disjoint, and furthermore max(xi ) < min(xi+1) for all
0 ≤ i < |x | − 1� �

Space.sequence(x, y)� �
additionally constrains the set variable y to be the union of the x .
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Value precedence constraints

enforce that a value precedes another value in an array of set variables.
x is an array of set variables and both s and t are integers,� �

Space.precede(x, s, t)� �
if there exists j (0 ≤ j < |x |) such that s ∈ xj and t ∈ xj , then there must
exist i with i < j such that s ∈ xi and t ∈ xi
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Model with set variables

� �
w = 4;
g = 3;
s = 3;

golfers = g ∗ s;
Golfer = range(golfers)

m=space()

groups = m.setvars(g∗w, intset(), 0, g∗s−1, s, s)
schedule = Matrix(w, g, groups) # is the set of group i in week j

# For each week, the union of all groups must be disjoint and contain all players
allPlayers = m.setvar(0, g∗s−1, 0, g∗s−1)
for wk in range(w):

m.rel(SOT_DUNION, schedule.row(wk), allPlayers)

# intersection between groups is at most 1
z=m.setvars(g∗w∗(g∗w−1)/2, intset(), 0, g∗s−1, 0, s)
l=0
for i,j in combinations(range(g∗w),2):

m.rel(groups[i], SOT_INTER, groups[j], SRT_EQ, z[l]);
m.cardinality(z[l], 0, 1)
l+=1

m.dom(groups[0],SRT_EQ,intset(0,2))

m.branch(groups, SET_VAR_MIN_MIN, SET_VAL_MIN_INC);� �
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A finite integer set V can be represented by its characteristic function
χV :

χV : Z 7→ {0, 1} where χv (i) = 1 iff i ∈ V

hence we can use a set of Boolean variables vi to represent the set V ,
which correspond to the propositions vi ⇐⇒ i ∈ V

Set bounds propagation is equivalent to performing domain propagation
in a naive way on this Boolean representation

Sets of sets: disjunction of characteristic functions

χV(i) ⇐⇒
∨

V∈V

χV (i)
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Consider the domain {{}, {1, 2}, {2, 3}}

Introduce propositional variables x1, x2, x3

Represent single variable domain as

(¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3))

Represent all variable domains as conjunction

Efficient datastructure: ROBDDs
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A Reduced Ordered Binary Decision Diagram (ROBDD) is a compact data
structure:
a canonical function representation up to reordering, which permits an
efficient implementation of many Boolean function operations.
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Set variables in Gecode do not use Reduced Ordered Binary
Decision Diagrams (ROBDDs).

A prototype alternative implementation using ROBDDs proved
to be a lot slower in many cases (and quite painful to maintain
because of additional dependencies).

The current implementation uses range lists (i.e. linked lists of
contiguous, sorted, non-overlapping ranges) to store a lower
and an upper bound, together with a lower and upper bound
on the cardinality.

Guido Tack
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Definition
A graph variable is simply two set variables V and E , with an inherent
constraint E ⊆ V × V .

Hence, the domain D(G ) = [lb(G ), ub(G )] of a graph variable G consists of:

mandatory vertices and edges lb(G ) (the lower bound graph) and
possible vertices and edges ub(G ) \ lb(G ) (the upper bound graph).

The value assigned to the variable G must be a subgraph of ub(G ) and a
super graph of the lb(G ).
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Graph variables are convinient for possiblity of efficient filtering algorithms

Example:

Subgraph(G,S)

specifies that S is a subgraph of G . Computing bound consistency for the
subgraph constraint means the following:
1. If lb(S) is not a subgraph of ub(G ), the constraint has no solution

(consistency check).
2. For each e ∈ ub(G ) ∩ lb(S), include e in lb(G ).
3. For each e ∈ ub(S) \ ub(G ), remove e from ub(S).
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Tree constraint: enforces the partitioning of a digraph into a set of
vertex-disjoint anti-arborescences. (see, [Beldiceanu2005])

Weghted Spanning Tree constraint: given a weighted undirected graph
G = (V ,E ) and a weight K , the constraint enforces that T is a
spanning tree of cost at most K (see, [Regin2008,2010] and its
application to the TSP [Rousseau2010]).

Shorter Path constraint: given a weighted directed graph G = (N,A)
and a weight K , the constraint specifies that P is a subset of G ,
corresponding to a path of cost at most K . (see, [Sellmann2003,
Gellermann2005])

(Weighted) Clique Constraint, (see, [Regin2003]).
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Floating point values represented as a closed interval of two floating
point numbers (short, float number):
closed interval [a..b] to represent all real numbers n such that a ≤ n ≤ b.

correct computations: no possible real number is ever excluded due to
rounding  Interval arithmetic

The float number type FloatNum defined as double

FloatVar x; x.min(); x.max(); x.tight() (a = b assigned)

predefined values pi_half(), pi(), pi_twice()

x<y  x.max()<y.min()
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Non default functions need recompilation

46



Set Variables
Graph Variables
Float Variables

As for integer variables, the default and copy constructors do not create new
variable implementations. Instead, the variable does not refer to any variable
implementation (default constructor) or to the same variable implementation
(copy constructor). For example in� �

FloatVar x(home, −1.0, 1.0);
FloatVar y(x);
FloatVar z;
z=y;
cout<<x;� �

the variables x, y, and z all refer to the same float variable implementation.

47



Set Variables
Graph Variables
Float VariablesConstraints

� �
dom(home, x, −2.0, 12.0);
dom(home, x, d);

rel(home, x, FRT_LE, y);
rel(home, x, FRT_LQ, 4.0);

rel(home, x, FRT_LQ, y);
rel(home, x, FRT_GR, 7.0);

min(home, x, y);

linear(home, a, x, FRT_EQ, c);
linear(home, x, FRT_GR, c);

channel(home, x, y);� �
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Whereas classical arithmetic defines operations on individual numbers,
interval arithmetic defines a set of operations on intervals:

T ·S = {x | there is some y in T , and some z in S , such that x = y · z}.

The basic operations of interval arithmetic are, for two intervals [a, b] and
[c , d ] that are subsets of the real line (−∞, infty):

[a, b] + [c , d ] = [a + c , b + d ],
[a, b]− [c , d ] = [a− d , b − c],
[a, b]×[c , d ] = [min(a×c , a×d , b×c , b×d),max(a×c , a×d , b×c , b×d)],
[a, b]/[c , d ] = [min(a/c , a/d , b/c , b/d),max(a/c , a/d , b/c , b/d)] when
0 is not in [c , d ].

Division by an interval containing zero is not defined under the basic interval
arithmetic.

The addition and multiplication operations are commutative, associative and
sub-distributive: the set X (Y + Z ) is a subset of XY + XZ .
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