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ModellingResume

First example: Sudoku
first experience on modelling in MILP and CP

SAT models

impose modelling rules (propositional calculus)

MILP models
impose modelling rules: linear inequalities and objectives
emphasis on tightness and compactness of LP, strength of bounds
(remove dominated constraints)

CP models
a large variety of algorithms communicating with each other: global
constraints
more expressiveness
emphasis on exploiting substructres, include redundant constraints
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ModellingCP

Constraint Programming = model (representation) + propagation (reasoning,
inference) + search (reasoning, inference)
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ModellingApplications

Operation research (optimization problems)

Graphical interactive systems (to express geometrical correctness)

Molecular biology (DNA sequencing, 3D models of proteins)

Finance

Circuit verification

Elaboration of natural languages (construction of efficient parsers)

Scheduling of activities

Configuration problem in form compilation

Generation of coerent music programs

Data bases

...

http://hsimonis.wordpress.com/
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ModellingApplications
Distribution of technology used at Google for optimization applications
developed by the operations research team

[Slide presented by Laurent Perron on OR-Tools at CP2013]
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ModellingConstraint Programming

The domain of a variable x , denoted D(x), is a finite set of elements that
can be assigned to x .

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C ⊆ D(x1)× · · · ×D(xk). A tuple (d1, . . . , dk) ∈ C is
called a solution to C .
Equivalently, we say that a solution (d1, ..., dk) ∈ C is an assignment of the
value di to the variable xi ,∀1 ≤ i ≤ k, and that this assignment satisfies C .
If C = ∅, we say that it is inconsistent.

Extensional: specifies the satisfying tuples
Intensional: specifies the characteristic function
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ModellingConstraint Programming

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X , together with a finite set of constraints
C , each on a subset of X . A solution to a CSP is an assignment of a value
d ∈ D(x) to each x ∈ X , such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables x1, . . . , xn, together with an
objective function f : D(x1)× · · · × D(xn)→ Q that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the
value of f (d).
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Modelling

Task:

determine whether the CSP/COP is consistent (has a solution):

find one solutions

find all solutions

find one optimal solution

find all optimal solutions
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ModellingSolving CSPs

Systematic search:

choose a variable xi that is not yet assigned

create a choice point, i.e. a set of mutually exclusive & exhaustive
choices, e.g. xi = v vs xi 6= v

try the first & backtrack to try the other if this fails

Constraint propagation:

add xi = v or x 6= v to the set of constraints

re-establish local consistency on each constraint
 remove values from the domains of future variables that can no longer
be used because of this choice

fail if any future variable has no values left
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ModellingRepresenting a Problem

If a CSP P =< X ,DE , C > represents a problem P, then every solution
of P corresponds to a solution of P and every solution of P can be
derived from at least one solution of P

More than one solution of P can represent the same solution of P, if
modelling introduces symmetry

The variables and values of P represent entities in P

The constraints of P ensure the correspondence between solutions

The aim is to find a model P that can be solved as quickly as possible
(Note that shortest run-time might not mean least search!)
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ModellingInteractions with Search Strategy

Whether a model is better than another can depend on the search algorithm
and search heuristics

Let’s assume that the search algorithm is fixed
although different level of consistency can also play a role

Let’s also assume that choice points are always xi = v vs xi 6= v

Variable (and value) order still interact with the model a lot

Is variable & value ordering part of modelling?

In practice it is.
but it depends on the modeling language used

14



ModellingGlobal Constraint: alldifferent

Global constraint:
set of more elementary constraints that exhibit a special structure when
considered together.

alldifferent constraint
Let x1, x2, . . . , xn be variables. Then:

alldifferent(x1, ..., xn) =

{(d1, ..., dn) | ∀i , di ∈ D(xi ), ∀i 6= j , di 6= dj}.

Constraint arity: number of variables involved in the constraint Note:

different notation and names used in the literature
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ModellingGlobal Constraint Catalog
http://www.emn.fr/z-info/sdemasse/gccat/sec5.html
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ModellingExample: Send More Money

Send + More = Money

You are asked to replace each letter by a different digit so that

S E N D +
M O R E =

M O N E Y

is correct. Because S and M are the leading digits, they cannot be equal to
the 0 digit.

Can you model this problem as an IP?

17



ModellingSend More Money: ILP model 1

xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }

δij

{
0 if xi < xj

1 if xj < xi

Crypto constraint:
103x1 +102x2 +10x3 +x4 +
103x5 +102x6 +10x7 +x2 =

104x5 +103x6 +102x3 +10x2 +x8

Each letter takes a different digit:

xi − xj − 10δij ≤ −1, for all i , j , i < j
xj − xi + 10δij ≤ 9, for all i , j , i < j
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ModellingSend More Money: ILP model 2

xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }
yij ∈ {0, 1} for all i ∈ I , j ∈ J = {0, . . . , 9}
Crypto constraint:

103x1 +102x2 +10x3 +x4 +
103x5 +102x6 +10x7 +x2 =

104x5 +103x6 +102x3 +10x2 +x8

Each letter takes a different digit:∑
j∈J

yij = 1, ∀i ∈ I ,

∑
i∈I

yij ≤ 1, ∀j ∈ J,

xi =
∑
j∈J

jyij , ∀i ∈ I .
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ModellingSend More Money: ILP model

The quality of these formulations depends on both the tightness of the LP
relaxations and the number of constraints and variables (compactness)

Which of the two models is tighter?

project out all extra variables in the LP so that the polytope for LP is in
the space of the x variables. By linear comb. of constraints:

Model 1

−1 ≤ xi − xj ≤ 10− 1

Model 2∑
j∈J

xj ≥
|J| (|J| − 1)

2
, ∀J ⊂ I ,

∑
j∈J

xj ≤
|J| (2k − |J|) + 1

2
, ∀J ⊂ I .

Can you find the convex hull of this problem?

Williams and Yan [2001] prove that model 2 is facet defining

Suppose we want to maximize MONEY, how strong is the upper bound
obtained with this formulation? How to obtain a stronger upper bound?
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ModellingSend More Money: ILP model (revisited)

xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }
Crypto constraint:

103x1 +102x2 +10x3 +x4 +
103x5 +102x6 +10x7 +x2 =

104x5 +103x6 +102x3 +10x2 +x8

Each letter takes a different digit:∑
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j∈J
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But exponentially many!
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ModellingSend More Money: CP model

SEND + MORE = MONEY

Xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }

Crypto constraint  1 equality constraint:
103X1 +102X2 +10X3 +X4 +
103X5 +102X6 +10X7 +X2 =

104X5 +103X6 +102X3 +10X2 +X8

Each letter takes a different digit  1 inequality constraint

alldifferent([X1,X2, . . . ,X8]).

(it substitutes 28 inequality constraints: Xi 6= Xj , i , j ∈ I , ß 6= j)
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ModellingSend More Money: CP model (revisited)
Xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }

103X1 +102X2 +10X3 +X4 +
103X5 +102X6 +10X7 +X2 =

104X5 +103X6 +102X3 +10X2 +X8

alldifferent([X1,X2, . . . ,X8]).

Redundant constraints (5 equality constraints)
X4 + X2 = 10 r1 + X8,

X3 + X7 + r1 = 10 r2 + X2,

X2 + X6 + r2 = 10 r3 + X3,

X1 + X5 + r3 = 10 r4 + X6,

+r4 = X5.

Can we do better? Can we propagate something?
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ModellingConstraint Reasoning
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ModellingILP model + CP propagation

xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }
yij ∈ {0, 1} for all i ∈ I , j ∈ J = {0, . . . , 9}

103x1 +102x2 +10x3 +x4 +
103x5 +102x6 +10x7 +x2 =

104x5 +103x6 +102x3 +10x2 +x8∑
j∈J

yij = 1, ∀i ∈ I ,

∑
i∈I

yij ≤ 1, ∀j ∈ J,

xi =
∑
j∈J

jyij , ∀i ∈ I .

Propagation adds valid inequalities:

LB(Xi ) ≤ xi ≤ UB(Xi ) for all i ∈ I

.
H. Simonis’ demo, slides 42-56

25
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ModellingThe convex hull of alldifferent

Convex Hull of of alldifferent

Given a set I = {1, . . . , n} (variable indices) and a set D = {0, . . . , k} with
k ≥ n, we consider

alldifferent([x1, . . . , xn]), with 0 ≤ xi ≤ k.

all the facets of the previous ILP formulation for the alldifferent
constraint are∑

j∈J

xj ≥
|J| (|J| − 1)

2
, ∀J ⊂ I ,

∑
j∈J

xj ≤
|J| (2k − |J|) + 1

2
, ∀J ⊂ I .

[Williams and Yan [2001]]
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ModellingSend More Money: CP model
Gecode-python

from gecode import *

s = space()
letters = s.intvars(8,0,9)
S,E,N,D,M,O,R,Y = letters
s.rel(M,IRT_NQ,0)
s.rel(S,IRT_NQ,0)
s.distinct(letters)
C = [1000, 100, 10, 1,

1000, 100, 10, 1,
-10000, -1000, -100, -10, -1]

X = [S,E,N,D,
M,O,R,E,
M,O,N,E,Y]

s.linear(C,X, IRT_EQ, 0)
s.branch(letters, INT_VAR_SIZE_MIN, INT_VAL_MIN)
for s2 in s.search():

print(s2.val(letters))
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ModellingSend Most Money: CP model
Gecode-python

Optimization version:

max
∑
i∈I ′

Xi , I ′ = {M,O,N,E ,Y }

from gecode import *

s = space()
letters = s.intvars(8,0,9)
S,E,N,D,M,O,T,Y = letters
s.rel(M,IRT_NQ,0)
s.rel(S,IRT_NQ,0)
s.distinct(letters)
C = [1000, 100, 10, 1,

1000, 100, 10, 1,
-10000, -1000, -100, -10, -1]

X = [S,E,N,D,
M,O,S,T,
M,O,N,E,Y]

s.linear(C,X,IRT_EQ,0)
money = s.intvar(0,99999)
s.linear([10000,1000,100,10,1],[M,O,N,E,Y], IRT_EQ, money)
s.maximize(money)
s.branch(letters, INT_VAR_SIZE_MIN, INT_VAL_MIN)
for s2 in s.search():

print(s2.val(money), s2.val(letters))
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ModellingSend More Money: CP model
MiniZinc
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ModellingGecode - gist

The inner nodes (blue circles)
are choices, the red square leaf
nodes are failures, and the
green diamond leaf node is a
solution.

32



Modelling

Lexicographic First-fail
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ModellingExercise

Can you try to solve:

Gerald + Donald = Robert
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ModellingViewpoints

A viewpoint is a pair < X ,DE >, i.e. a set of variables and their domains

Given a viewpoint, the constraints have to restrict the solutions of P to
solutions of P

So the constraints are (to some extent) decided by the viewpoint

Different viewpoints give very different models

We can combine viewpoints - more later

Good rule of thumb: choose a viewpoint that allows the constraints to
be expressed easily and concisely

will propagate well, so problem can be solved efficiently

35



ModellingModelling

Different views to the problem

Adding implied constraints

Auxiliary variables to make it easier to state constraints and improve
constraint propagation

36



ModellingA Puzzle Example

SEND +

MORE =

MONEY

Two representations

The first yields initially a weaker constraint propagation. The tree has 23
nodes and the unique solution is found after visiting 19 nodes

The second representation has a tree with 29 nodes and the unique
solution is found after visiting 23 nodes

However for the puzzle GERALD + DONALD = ROBERT the situation is reverse.
The first has 16651 nodes and 13795 visits while the second has 869 nodes
and 791 visits

 Finding the best model is an empirical science
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ModellingGuidelines

Rules of thumbs for modelling (to take with a grain of salt):

use representations that involve less variables and simpler constraints for
which constraint propagators are readily available

use constraint propagation techniques that require less preprocessing (ie,
the introduction of auxiliary variables) since they reduce the search space
better.
Disjunctive constraints may lead to an inefficient representation since
they can generate a large search space.

use global constraints

38
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