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Arc Consistency AlgorithmsResume

Definitions
(CSP, restrictions, projections, istantiation, local consistency)

Tigthtenings

Global consistent (any instantiation local consistent can be extended to
a solution) needs exponential time
 local consistency defined by condition Φ of the problem

Tightenings by constraint propagation: reduction rules + rules iterations
reduction rules ⇔ Φ consistency
rules iteration: reach fixed point, that is, closure of all tightenings that
are Φ consistent

Domain-based Φ: (generalized) arc consistency
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Arc Consistency AlgorithmsOutline

1. Arc Consistency Algorithms
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Arc Consistency AlgorithmsArc Consistency
Arc Consistency rule 1 (propagator):

〈C ; x ∈ D(x), y ∈ D(y)〉
〈C ; x ∈ D ′(x), y ∈ D(y)〉

where D ′(x) := {a ∈ D(x)|∃b ∈ D(y), (a, b) ∈ C}

This can also be written as (on represents the join):

D(x)← D(x) ∩ π{x}(on(C ,D(y)))

Arc Consistency rule 2 (propagator):

〈C ; x ∈ D(x), y ∈ D(y)〉
〈C ; x ∈ D(x), y ∈ D ′(y)〉

where D ′(y) := {b ∈ D(y)|∃a ∈ D(x), (a, b) ∈ C}

This can also be written as:

D(y)← D(y) ∩ π{y}(on(C ,D(x)))
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Arc Consistency AlgorithmsGeneralized Arc Consistency

(Generalized) Arc Consistency rule (propagator):

〈C ; x1 ∈ D(x), . . . , xk ∈ D(xk)〉
〈C ; x1 ∈ D(x1), . . . , xi−1 ∈ D(xi−1), xi ∈ D ′(xi ), xi+1 ∈ D(xi+1), . . . , xk ∈ D(xk)〉

where D ′(xi ) := {a ∈ D(xi )|∃τ ∈ C , a = τ [xi ]}

This can also be written as:

D(xi )← D(xi ) ∩ π{xi}(C ∩ πX (C)(DE))
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Arc Consistency AlgorithmsAC1 – Reduction rule

Revision: making a constraint arc consistent by propagating the domain from
a variable to anohter
Corresponds to:

D(x)← D(x) ∩ π{x}(on(C ,D(y)))

for a given variable x and constraint C
Assume normalized network:

Complexity: O(d2) or O(rd r )
d values, r arity
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Arc Consistency AlgorithmsAC1 – Rules Iteration
Binary case

Complexity (Mackworth and Freuder, 1986): O(end3)
e number of arcs, n variables
(ed2 each loop, nd number of loops)
best-case = O(ed)

Arc-consistency is at least O(ed2) in the worst case
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Arc Consistency AlgorithmsAC3 (Macworth, 1977)
General case – Arc oriented (coarse-grained)

O(er3d r+1) time
O(er) space
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Arc Consistency AlgorithmsAC3
Example

P = 〈X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y 6= z}}〉
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Arc Consistency AlgorithmsAC4
Binary normalized problems – value oriented (fine grained)

O(ed2) time
O(erd r ) time for GAC
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Arc Consistency AlgorithmsAC4
Example

P = 〈X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y 6= z}}〉
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Arc Consistency AlgorithmsAC6
Binary normalized problems

O(ed2) time
O(ed) space
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Arc Consistency AlgorithmsAC6
Example

P = 〈X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y 6= z}}〉
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Arc Consistency AlgorithmsReverse2001
Binary case

O(ed2) time
O(ed) space
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Arc Consistency AlgorithmsReverse2001
Example

P = 〈X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y 6= z}}〉
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Arc Consistency AlgorithmsLimitation of Arc Consistency

Example

〈x < y , y < z , z < x ; x , y , z ∈ {1..100000}〉

is inconsistent.

Proof: Apply revise to (x , x < y)

〈x < y , y < z , z < x ; x ∈ {1..99999}, y , z ∈ {1..100000}〉,

ecc. we end in a fail.

Disadvantage: large number of steps.
Run time depends on the size of the domains!

Note: we could prove fail by transitivity of <.
 Path consitency involves two constraints together
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