
FF505

Computational Science

Lecture 2
More on Matrix Calculations and Math Functions

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

More on Matrix Calculations
Math Functions
Software ComparisonOutline

1. More on Matrix Calculations

2. Math Functions

3. Software Comparison

2

More on Matrix Calculations
Math Functions
Software ComparisonResume

MATrix LABoratory

MATLAB, numerical computing vs scientific computing, alternatives

MATLAB Desktop

Variables and Script files

Vectors, matrices and arrays

Solving systems of linear equations

3

More on Matrix Calculations
Math Functions
Software ComparisonOutline

1. More on Matrix Calculations

2. Math Functions

3. Software Comparison

4

More on Matrix Calculations
Math Functions
Software ComparisonOrder of Operations

1. parenthesis, from innermost
2. exponentiation, from left to right
3. multiplication and division with equal precedence, from left to right
4. addition and subtraction with equal precedence, from left to right� �

>>4^2-12-8/4*2
ans =

0
>>4^2-12-8/(4*2)
ans =

3
>> 3*4^2 + 5
ans =

53
>>(3*4)^2 + 5
ans =

149� �

� �
>>27^(1/3) + 32^(0.2)
ans =

5
>>27^(1/3) + 32^0.2
ans =

5
>>27^1/3 + 32^0.2
ans =

11� �

5

More on Matrix Calculations
Math Functions
Software ComparisonCreating Matrices

� �
eye(4) % identity matrix
zeros(4) % matrix of zero elements
ones(4) % matrix of one elements� �� �
A=rand(8)
triu(A) % upper triangular matrix
tril(A)
diag(A) % diagonal� �

� �
>> [eye(2), ones(2,3); zeros(2),

[1:3;3:-1:1]]

ans =

1 0 1 1 1
0 1 1 1 1
0 0 1 2 3
0 0 3 2 1� �

Can you create this matrix in one line of code?

-5 0 0 0 0 0 0 1 1 1 1
0 -4 0 0 0 0 0 0 1 1 1
0 0 -3 0 0 0 0 0 0 1 1
0 0 0 -2 0 0 0 0 0 0 1
0 0 0 0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 2 0 0 0
1 1 0 0 0 0 0 0 3 0 0
1 1 1 0 0 0 0 0 0 4 0
1 1 1 1 0 0 0 0 0 0 5

6

More on Matrix Calculations
Math Functions
Software ComparisonMatrix-Matrix Multiplication

In the product of two matrices A * B,
the number of columns in A must equal the number of rows in B.

The product AB has the same number of rows as A and the same number of
columns as B. For example� �
>> A=randi(10,3,2) % returns a 3−by−2 matrix containing pseudorandom integer values

drawn from the discrete uniform distribution on 1:10
A =

6 10
10 4
5 8

>> C=randi(10,2,3)*100
C =

1000 900 400
200 700 200

>> A*C % matrix multiplication
ans =

8000 12400 4400
10800 11800 4800
6600 10100 3600� �

Remark:
Matrix multiplication does not have the commutative property; that is, in
general, AB 6= BA. Make a simple example to demonstrate this fact.

7

More on Matrix Calculations
Math Functions
Software ComparisonMatrix Operations

� �
%% matrix operations
A * C % matrix multiplication
B = [5 6; 7 8; 9 10] * 100 % same dims as A
A .* B % element−wise multiplcation
% A .∗ C or A ∗ B gives error − wrong dimensions
A .^ 2
1./B
log(B) % functions like this operate element−wise on vecs or matrices
exp(B) % overflow
abs(B)
v = [-3:3] % = [−3 −2 −1 0 1 2 3]
-v % −1∗v

v + ones(1,length(v))
% v + 1 % same

A’ % (conjuate) transpose� �

8

More on Matrix Calculations
Math Functions
Software ComparisonMultidimensional Arrays

Consist of two-dimensional matrices layered to produce a third dimension.
Each layer is called a page.� �
cat(2,A,B) % is the same as [A,B].
cat(1,A,B) % is the same as [A;B].� �� �
>> A = magic(3); B = pascal(3);
>> C = cat(4,A,B) %concatenate matrices along DIM

C(:,:,1,1) =

8 1 6
3 5 7
4 9 2

C(:,:,1,2) =
1 1 1
1 2 3
1 3 6� �

9

More on Matrix Calculations
Math Functions
Software ComparisonArray Operations

Addition/Subtraction: trivial

Multiplication:

of an array by a scalar is easily defined and easily carried out.

of two arrays is not so straightforward:
MATLAB uses two definitions of multiplication:

array multiplication (also called element-by-element multiplication)

matrix multiplication

Division and exponentiation MATLAB has two forms on arrays.
element-by-element operations

matrix operations

10

More on Matrix Calculations
Math Functions
Software ComparisonElement-by-Element Operations

Symbol Operation Form Examples

+ Scalar-array addition A + b [6,3]+2=[8,5]

- Scalar-array subtraction A - b [8,3]-5=[3,-2]

+ Array addition A + B [6,5]+[4,8]=[10,13]

- Array subtraction A - B [6,5]-[4,8]=[2,-3]

.* Array multiplication A.*B [3,5].*[4,8]=[12,40]

./ Array right division A./B [2,5]./[4,8]=[2/4,5/8]

.\ Array left division A.\B [2,5].\[4,8]=[2\4,5\8]

.^ Array exponentiation A.^B [3,5].^2=[3^2,5^2]

2.^[3,5]=[2^3,2^5]

[3,5].^[2,4]=[3^2,5^4]

11

More on Matrix Calculations
Math Functions
Software ComparisonBackslash or Matrix Left Division

A\B is roughly like INV(A)*B except that it is computed in a different way:
X = A\B is the solution to the equation A*X = B computed by Gaussian
elimination.

Slash or right matrix division:
A/B is the matrix division of B into A, which is roughly the same as A*INV(B),
except it is computed in a different way. More precisely, A/B = (B’\A’)’.

12

More on Matrix Calculations
Math Functions
Software Comparison

cross(A,B) cross product: eg: moment M = r× F

dot(A,B) scalar product: computes the projection of a vector on the other.
eg. dot(Fr,r) computes component of force F along direction r
Inner product, generalization of dot product� �
v=1:10
u=11:20
u*v’ % inner or scalar product
ui=u+i
ui’
v*ui’ % inner product of C^n
norm(v,2)
sqrt(v*v’)� �

13

More on Matrix Calculations
Math Functions
Software ComparisonUseful Functions

� �
% max (or min)
a = [1 15 2 0.5]
val = max(a)
[val,ind] = max(a)

% find
find(a < 3)
A = magic(3) %N−by−N matrix

constructed from the integers 1
through N^2 with equal row, column,
and diagonal sums.

[r,c] = find(A>=7)

% sum, prod
sum(a)
prod(a)
floor(a) % or ceil(a)
max(rand(3),rand(3))
max(A,[],1)
min(A,[],2)
A = magic(9)
sum(A,1)
sum(A,2)� �

� �
% pseudo−inverse
pinv(A) % inv(A’∗A)∗A’

% check empty e=[]
isempty(e)
numel(A)
size(A)
prod(size(A))� �� �
sort(4:-1:1)
sort(A) % sorts the columns� �

14

More on Matrix Calculations
Math Functions
Software ComparisonUseful Functions

Working with polynomials:

f(x) = a1x
n + a2x

n−1 + a3x
n−2 + . . .+ an−1x

2 + anx+ an+1

is represented in MATLAB by the vector

[a1, a2, a3, . . . , an−1, an, an+1]

� �
help polyfun
r=roots([1,-7,40,-34]) % x^3−7x^2+40x−34
poly(r) % returns the polynomial whose roots are r
roots(poly(1:20))
poly(A) % coefficients of the characteristic polynomial, det(lambda∗EYE(SIZE(A)) − A)� �

15

More on Matrix Calculations
Math Functions
Software ComparisonUseful Functions

Product and division of polynomials:

f(x)g(x) = (9x3 − 5x2 + 3x+ 7)(6x2 − x+ 2) =

= 54x5 − 39x4 + 41x3 + 29x2 − x+ 14

f(x)

g(x)
=

9x3 − 5x2 + 3x+ 7

6x2 − x+ 2
= 1.5x− 0.5833

and a remainder of −0.5833x+ 8.1667.� �
f = [9 -5 3 7];
g = [6 -1 2];
product = conv(f,g)
product =

54 -39 41 29 -1 14

[quotient,remainder] = deconv(f,g)
quotient =

1.5000 -0.5833
remainder =

0 0 -0.5833 8.1667� �
16

More on Matrix Calculations
Math Functions
Software ComparisonReshaping

� �
%% reshape and replication
A = magic(3) % magic square
A = [A [0;1;2]]
reshape(A,[4 3]) % columnwise
reshape(A,[2 6])
v = [100;0;0]
A+v
A + repmat(v,[1 4])� �

17

More on Matrix Calculations
Math Functions
Software ComparisonOutline

1. More on Matrix Calculations

2. Math Functions

3. Software Comparison

18

More on Matrix Calculations
Math Functions
Software ComparisonCommon Mathematical Functions

20

More on Matrix Calculations
Math Functions
Software ComparisonCommon Mathematical Functions

21

More on Matrix Calculations
Math Functions
Software ComparisonCommon Mathematical Functions

22

More on Matrix Calculations
Math Functions
Software ComparisonOutline

1. More on Matrix Calculations

2. Math Functions

3. Software Comparison

24

More on Matrix Calculations
Math Functions
Software ComparisonWhy MATLAB?

1. You should learn first to do symbolic computations on paper.
This will always be necessary to understand.

2. Matlab is much more efficient than Maple when computations become
heavy

3. Matlab is more intuitive to program

4. Matlab is spread in the industry

(However, Maple could also be fine for the project)

25

More on Matrix Calculations
Math Functions
Software ComparisonPerformance Comparison

Some advanced applications in mathematics and physics need to handle
matrices of huge size, eg:

discretization of (partial) differential equations

finite element methods

discrete laplacians.
Matrix storage� �
S = sparse((rand(5,5) < 2/3))
issparse(S)
M = full(S)
[i,j,k] = find(M);

save sparse i j k;
S=sparse(i,j,k);� �

� �
M =

1 0 1 1 1
0 1 1 1 0
1 1 1 1 1
1 1 1 1 1
0 1 0 1 1� �

� �
S =

(1,1) 1
(3,1) 1
(4,1) 1
(2,2) 1
(3,2) 1
(4,2) 1
(5,2) 1
(1,3) 1
(2,3) 1
(3,3) 1
(4,3) 1
(1,4) 1
(2,4) 1
...� �

26

More on Matrix Calculations
Math Functions
Software Comparison

If X is an m× n matrix with nz nonzero elements then full(X) requires space
to store m× n elements. On the other hand, sparse(X) requires space to store
nz elements and (nz + n+ 1) integers.� �
S = sparse(+(rand(200,200) < 2/3));
A = full(S);
whos
Name Size Bytes Class
A 200X200 320000 double array
S 200X200 318432 double array (sparse)

imagesc(A) %pcolor(A)� �
� �
S = sparse(+(rand(200,200) < 1/3));
A = full(S);
whos
Name Size Bytes Class Attributes
A 200x200 320000 double
S 200x200 163272 double sparse

imagesc(A) %pcolor(A)� �
27

More on Matrix Calculations
Math Functions
Software ComparisonMATLAB and Octave

� �
tic, load TestA;
load Testb; toc
tic, c=A\b; toc� �� �
>> whos
Name Size Bytes Class Attributes
A 1000000x1000000 51999956 double sparse
b 1000000x1 8000000 double
c 1000000x1 8000000 double� �

MATLAB� �
Elapsed time is 0.191414 seconds.
Elapsed time is 0.639878 seconds.� �
Octave� �
octave:1> comparison
Elapsed time is 0.276378 seconds.
Elapsed time is 0.618884 seconds.� �

28

More on Matrix Calculations
Math Functions
Software ComparisonPerformance Comparison – MAPLE� �

> A:=ImportMatrix("TestA.mat",source=MATLAB);
memory used=72.8MB, alloc=72.9MB, time=0.51
memory used=122.8MB, alloc=122.8MB, time=0.59
memory used=192.4MB, alloc=192.2MB, time=1.57
memory used=262.6MB, alloc=224.3MB, time=2.44
memory used=300.7MB, alloc=224.3MB, time=3.24
...
memory used=1264.3MB, alloc=520.3MB, time=38.07
memory used=1325.2MB, alloc=568.3MB, time=43.73
memory used=1392.2MB, alloc=621.1MB, time=50.59
memory used=1465.8MB, alloc=679.2MB, time=58.95
memory used=1546.9MB, alloc=743.1MB, time=69.12

[1000000 x 1000000 Matrix]
A := ["A", [Data Type: float[8]]]

[Storage: sparse]
[Order: Fortran_order]

> b:=ImportMatrix("Testb.mat",source=MATLAB);
memory used=1621.2MB, alloc=743.1MB, time=76.11

[1000000 x 1 Matrix]
b := ["b", [Data Type: float[8]]]

[Storage: rectangular]
[Order: Fortran_order]

> with(LinearAlgebra):
> c:=LinearSolve(A,b);
Error, (in simplify/table) dimensions too large� �

29

More on Matrix Calculations
Math Functions
Software ComparisonPerformance Comparison – R

� �
library(R.matlab)
library(Matrix)
S<-readMat("sparse.mat")
b<-readMat("Testb.mat")

A <- sparseMatrix(Si,Sj,S$k)

system.time(try(solve(A,b)))

Am <- as.(A,"matrix")
fails
Error in asMethod(object) :
Cholmod error ’problem too large’ at file ../Core/cholmod_dense.c, line 105� �

30

More on Matrix Calculations
Math Functions
Software ComparisonResume

Large sparse matrices and performance comparison

Arrays

Mathematical Functions

Next time:

Programming, control structures

Vectorization

Advanced plotting

random numbers generation

31

	More on Matrix Calculations
	Math Functions
	Software Comparison

