
FF505/FY505

Computational Science

Lecture 3
Programming: Control Flow

Graphics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Programming
Graphics
Programming Style GuideOutline

1. Programming

2. Graphics
2D Plots
3D Plots

3. Programming Style Guide

2

Programming
Graphics
Programming Style GuideResume

Overview of MATLAB environment

Overview of MATLAB programming and arrays

Solving linear systems in MATLAB

Matrix and element-by-element operations

Mathematical functions

Large sparse matrices and performance comparison

You have been working at the posted exercises in small groups

3

Programming
Graphics
Programming Style GuideMatrix Functions

Eigenvalues and eigenvectors:� �
A = ones(6)
trace(A)
A = A - tril(A)-triu(A,2)
eig(A)

diag(ones(3,1),-1)
[V,D]=eig(diag(1:4))

rank(A) % rank of A
orth(A) % orthonormal basis� �

Visualizing Eigenvalues� �
A=[5/4,0;0,3/4];
eigshow(A) %effect of operator A on unit

verctor� �

4

Programming
Graphics
Programming Style GuideToday

Graphics: basic and advanced plotting

Programming: Control structures

Writing your own functions (and small programs)

5

Programming
Graphics
Programming Style GuideOutline

1. Programming

2. Graphics
2D Plots
3D Plots

3. Programming Style Guide

6

Programming
Graphics
Programming Style GuideAlgorithms and Control Structures

Algorithm: an ordered sequence of instructions that perform some task in a
finite amount of time.

Individual statements, instructions or function calls can be numbered and
executed in sequence, but an algorithm has the ability to alter the order of its
instructions. The order is referred to as control flow.

Three categories of control flow:

Sequential operations

Conditional operations: logical conditions that determine actions.

Iterative operations (loops)

For an imperative or a declarative program a control flow statement is a
statement whose execution results in a choice being made as to which of two
or more paths should be followed.

For non-strict functional languages (like Matlab), functions and language
constructs exist to achieve the same result, but they are not necessarily called
control flow statements (eg, vectorization).

7

Programming
Graphics
Programming Style GuideRelational Operators

< Less than.
<= Less than or equal to.
> Greater than.
>= Greater than or equal to.
== Equal to.
~= Not equal to.� �

islogical(5~=8)
ans =

1
islogical(logical(5+8))
ans =

1
>> logical(5+8)
ans =

1
>> double(6>8)
ans =

0
>> isnumeric(double(6>8))
ans =

1� �
8

Programming
Graphics
Programming Style GuideLogical Operators

~ NOT ~A returns an array the same dimension as A;
the new array has ones where A is zero and zeros
where A is nonzero.

& AND A & B returns an array the same dimension as
A and B; the new array has ones where both A
and B have nonzero elements and zeros where
either A or B is zero.

| OR A | B returns an array the same dimension as A
and B; the new array has ones where at least one
element in A or B is nonzero and zeros where A
and B are both zero.

&& Short-Circuit AND Operator for scalar logical expressions. A && B
returns true if both A and B evaluate to true,
and false if they do not.

|| Short-Circuit OR Operator for scalar logical expressions. A || B
returns true if either A or B or both evaluate to
true, and false if they do not.

9

Programming
Graphics
Programming Style GuidePrecedence

1. Parentheses; evaluated starting with the innermost pair.
2. Arithmetic operators and logical NOT (~); evaluated from left to right.
3. Relational operators; evaluated from left to right.
4. Logical AND.
5. Logical OR.

10

Programming
Graphics
Programming Style GuideThe if Statement

The if statement’s basic form is� �
if logical expression

statements
end� �

11

Programming
Graphics
Programming Style GuideThe else Statement

The basic structure for the use of the
else statement is� �
if logical expression

statement group 1
else

statement group 2
end� �

12

Programming
Graphics
Programming Style Guide

� �
if logical expression 1

if logical expression 2
statements

end
end� �
can be replaced with the more concise program� �
if logical expression 1 & logical

expression 2
statements

end� �

13

Programming
Graphics
Programming Style GuideThe elseif Statement

The general form of the if statement is� �
if logical expression 1

statement group 1
elseif logical expression 2

statement group 2
else

statement group 3
end� �

14

Programming
Graphics
Programming Style Guidefor Loops

A simple example of a for loop is� �
for k = 5:10:35

x = k^2
end� �

15

Programming
Graphics
Programming Style Guidewhile Loops

� �
while logical expression

statements
end� �
The while loop is used when the
looping process terminates because a
specified condition is satisfied, and
thus the number of passes is not
known in advance.� �
x = 5;
while x < 25

disp(x)
x = 2*x - 1;

end� �

16

Programming
Graphics
Programming Style Guideswitch

� �
switch input expression % (can be a

scalar or string).
case value1

statement group 1
case value2

statement group 2
.
.
.
otherwise

statement group n
end� �

� �
switch angle

case 45
disp(’Northeast’)

case 135
disp(’Southeast’)

case 225
disp(’Southwest’)

case 315
disp(’Northwest’)

otherwise
disp(’Direction Unknown’)

end� �

17

Programming
Graphics
Programming Style GuideControl Flow

if� �
if w(1)==0

% <statement>
elseif w(1)==1

% <statement>
else

% <statement>
end� �
switch� �
method = ’Bilinear’;
switch lower(method)

case {’linear’,’bilinear’}
disp(’Method is linear’)

case ’cubic’
disp(’Method is cubic’)

case ’nearest’
disp(’Method is nearest’)

otherwise
disp(’Unknown method.’)

end� �

for� �
w = [];
z = 0;
is = 1:10
for i=is

w = [w, 2*i] % Same as \/
% w(i) = 2∗i
% w(end+1) = 2∗i

z = z + i;
% break;
% continue;

end
% avoid! same as w = 2∗[1:10], z = sum([1:10]);� �
while� �
w = [];
while length(w) < 3

w = [w, 4];
% break

end� �
18

Programming
Graphics
Programming Style GuideContinue and Break

The continue statement passes control to the next iteration of the for loop or
while loop in which it appears, skipping any remaining statements in the
body of the loop.
The break statement is used to exit early from a for loop or while loop. In
nested loops, break exits from the innermost loop only.

This will never end� �
while count <= 20

if true
continue

end
count = count + 1;

end� �

This will iterate once and stop� �
while count <= 20

if true
break

end
count = count + 1;

end� �

19

Programming
Graphics
Programming Style GuideVectorization

MATLAB is optimized for operations involving matrices and vectors.
Vectorization: The process of revising loop-based, scalar-oriented code to use
MATLAB matrix and vector operations

A simple example to create a table of logarithms:
loop-based, scalar-oriented code:� �
x = .01;
for k = 1:1001

y(k) = log10(x);
x = x + .01;

end� �

A vectorized version of the same
code is� �
x = .01:.01:10;
y = log10(x);� �

Some functions are vectorized, hence with vectors must use
element-by-element operators to combine them.
Eg: z = ey sinx, x and y vectors:� �
z=exp(y).*sin(x)� �

20

Programming
Graphics
Programming Style GuideVectorization

Vectorizing your code is worthwhile for:

Appearance: Vectorized mathematical code appears more like the
mathematical expressions found in textbooks, making the code easier to
understand.

Less Error Prone: Without loops, vectorized code is often shorter. Fewer
lines of code mean fewer opportunities to introduce programming errors.

Performance: Vectorized code often runs much faster than the
corresponding code containing loops.

21

Programming
Graphics
Programming Style GuidePreallocation

Another speedup techinque is preallocation. Memory allocation is slow.� �
r = zeros(32,1);
for n = 1:32

r(n) = rank(magic(n));
end� �
Without the preallocation MATLAB would enlarge the r vector by one
element each time through the loop.

22

Programming
Graphics
Programming Style GuideOutline

1. Programming

2. Graphics
2D Plots
3D Plots

3. Programming Style Guide

23

Programming
Graphics
Programming Style GuideIntroduction

Plot measured data (points) or functions (lines)
Two-dimensional plots or xy plots� �
help graph2d� �
Three-dimensional plots or xyz plots or
surface plots� �
help graph3d� �

24

Programming
Graphics
Programming Style GuideNomenclature xy plot

25

Programming
Graphics
Programming Style Guide

An Example: y = sin(x)

� �
x = 0:0.1:52;
y = sin(x)
plot(x,y)
xlabel(’x’)
ylabel(’y’)
title(’The sine function’)� �

The autoscaling feature in MATLAB selects tick-mark spacing.

27

Programming
Graphics
Programming Style GuidePlotedit

But better to do this with lines of code, just in case you have to redo the plot. 28

Programming
Graphics
Programming Style GuideSaving Figures

The plot appears in the Figure window. You can include it in your
documents:

1. type
print -dpng foo
at the command line. This command sends the current plot directly to
foo.png

 help print

2. from the File menu, select Save As, write the name and select file format
from Files of Types (eg, png, jpg, etc)
.fig format is MATLAB format, which allows to edit

3. from the File menu, select Export Setup to control size and other
parameters

4. on Windows, copy on clipboard and paste. From Edit menu, Copy
Figure and Copy Options

29

Programming
Graphics
Programming Style GuideThe grid and axis Commands

grid command to display gridlines at the tick marks corresponding to
the tick labels.
grid on to add gridlines;
grid off to stop plotting gridlines;
grid to toggle

axis command to override the MATLAB selections for the axis limits.
axis([xmin xmax ymin ymax]) sets the scaling for the x- and y-axes
to the minimum and maximum values indicated. Note: no separating
commas
axis square, axis equal, axis auto

30

Programming
Graphics
Programming Style Guide

plot complex numbers� �
y=0.1+0.9i, plot(y)
z=0.1+0.9i, n=0:0.01:10,
plot(z.^n), xlabels(’Real’), ylabel(’Imaginary’)� �
function plot command� �
f=@(x) (cos(tan(x))-tan(sin(x)));
fplot(f,[1 2])
[x,y]=fplot(function,limits)� �
plotting polynomials
Eg, f(x) = 9x3 − 5x2 + 3x+ 7 for
−2 ≤ x ≤ 5:� �
a = [9,-5,3,7];
x = -2:0.01:5;
plot(x,polyval(a,x)),xlabel(’x’),ylabel(’f(x)’)� �

31

Programming
Graphics
Programming Style GuideSubplots

subplot command to obtain several smaller subplots in the same figure.

subplot(m,n,p) divides the Figure window into an array of rectangular
panes with m rows and n columns and sets the pointer after the pth pane.

� �
x = 0:0.01:5;
y = exp(-1.2*x).*sin(10*x+5);
subplot(1,2,1)
plot(x,y),axis([0 5 -1 1])
x = -6:0.01:6;
y = abs(x.^3-100);
subplot(1,2,2)
plot(x,y),axis([-6 6 0 350])� �

32

Programming
Graphics
Programming Style GuideData Markers and Line Types

Three components can be specified in the string specifiers along with the
plotting command. They are:

Line style

Marker symbol

Color� �
plot(x,y,u,v,’--’) % where the symbols ’−−’ represent a dashed line
plot(x,y,’*’,x,y,’:’) % plot y versus x with asterisks connected with a dotted line
plot(x,y,’g*’,x,y,’r--’) % green asterisks connected with a red dashed line� �� �
% Generate some data using the besselj
x = 0:0.2:10;
y0 = besselj(0,x);
y1 = besselj(1,x);
y2 = besselj(2,x);
y3 = besselj(3,x);
y4 = besselj(4,x);
y5 = besselj(5,x);
y6 = besselj(6,x);

plot(x, y0, ’r+’, x, y1, ’go’, x, y2, ’b*’,
x, y3, ’cx’, ...

x, y4, ’ms’, x, y5, ’yd’, x, y6, ’kv’);� �
33

Programming
Graphics
Programming Style Guide

� �
doc LineSpec� �

34

Programming
Graphics
Programming Style GuideLabeling Curves and Data

The legend command automatically obtains the line type used for each data
set� �
x = 0:0.01:2;
y = sinh(x);
z = tanh(x);
plot(x,y,x,z,’--’),xlabel(’x’)
ylabel(’Hyperbolic Sine and Tangent’)
legend(’sinh(x)’,’tanh(x)’)� �

35

Programming
Graphics
Programming Style GuideThe hold Command and Text Annotations

� �
x=-1:0.01:1
y1=3+exp(-x).*sin(6*x);
y2=4+exp(-x).*cos(6*x);
plot((0.1+0.9i).^(0:0.01:10)), hold, plot(y1,y2)
gtext(’y2 versus y1’) % places in a point specified by the mouse
gtext(’Img(z) versus Real(x)’,’FontName’,’Times’,’Fontsize’,18)� �

� �
text(’Interpreter’,’latex’,...
’String’,...
’$(3+e^{-x}\sin({\it 6x}),4+e^{-x}\cos({\

it 6x}))$’,...
’Position’,[0,6],...
’FontSize’,16)� �
Search Text Properties in Help
Search Mathematical symbols, Greek
Letter and TeX Characters

36

Programming
Graphics
Programming Style GuideAxes Transformations

Instead of plot, plot with� �
loglog(x,y) % both scales logarithmic.
semilogx(x,y) % x scale logarithmic and the y scale rectilinear.
semilogy(x,y) % y scale logarithmic and the x scale rectilinear.� �

37

Programming
Graphics
Programming Style GuideLogarithmic Plots

Remember:

1. You cannot plot negative numbers on a log scale: the logarithm of a
negative number is not defined as a real number.

2. You cannot plot the number 0 on a log scale: log10 0 = −∞.

3. The tick-mark labels on a log scale are the actual values being plotted;
they are not the logarithms of the numbers. Eg, the range of x values in
the plot before is from 10−1 = 0.1 to 102 = 100.

4. Gridlines and tick marks within a decade are unevenly spaced. If 8
gridlines or tick marks occur within the decade, they correspond to
values equal to 2, 3, 4, . . . , 8, 9 times the value represented by the first
gridline or tick mark of the decade.

5. Equal distances on a log scale correspond to multiplication by the same
constant (as opposed to addition of the same constant on a rectilinear
scale).

38

Programming
Graphics
Programming Style Guide

39

Programming
Graphics
Programming Style GuideSpecialized plot commands

Command Description
bar(x,y) Creates a bar chart of y versus x
stairs(x,y) Produces a stairs plot of y versus x.
stem(x,y) Produces a stem plot of y versus x.

40

Programming
Graphics
Programming Style Guide

Command Description
plotyy(x1,y1,x2,y2) Produces a plot with two y-axes, y1 on

the left and y2 on the right
polar(theta,r,’type’) Produces a polar plot from the polar co-

ordinates theta and r, using the line type,
data marker, and colors specified in the
string type.

41

Programming
Graphics
Programming Style GuideScatter Plots

� �
load count.dat
scatter(count(:,1),count(:,2),

’r*’)
xlabel(’Number of Cars on

Street A’);
ylabel(’Number of Cars on

Street B’);� �

42

Programming
Graphics
Programming Style GuideError Bar Plots

� �
load count.dat;
y = mean(count,2);
e = std(count,1,2);
figure
errorbar(y,e,’xr’)� �

43

Programming
Graphics
Programming Style GuideSplines

Add interpolation

� �
x=1:24
y=count(:,2)
xx=0:.25:24
yy=spline(x,y,xx)
plot(x,y,’o’,xx,yy)� �

44

Programming
Graphics
Programming Style GuideThree-Dimensional Line Plots

Plot in 3D the curve: x = e−0.05t sin(t), y = e−0.05t cos(t), z = t� �
t = 0:pi/50:10*pi;
plot3(exp(-0.05*t).*sin(t), exp(-0.05*t).*cos(t), t)
xlabel(’x’), ylabel(’y’), zlabel(’z’), grid� �

46

Programming
Graphics
Programming Style GuideSurface Plots

Surface plot of the function z = xe−[(x−y2)2+y2], for −2 ≤ x ≤ 2 and
−2 ≤ y ≤ 2 with a spacing of 0.1� �
[X,Y] = meshgrid(-2:0.1:2);
Z = X.*exp(-((X-Y.^2).^2+Y.^2));
mesh(X,Y,Z), xlabel(’x’), ylabel(’y’), zlabel(’z’)� �

47

Programming
Graphics
Programming Style GuideContour Plots

Contour plot of the function z = xe−[(x−y2)2+y2], for −2 ≤ x ≤ 2 and
−2 ≤ y ≤ 2 with a spacing of 0.1� �
[X,Y] = meshgrid(-2:0.1:2);
Z = X.*exp(-((X-Y.^2).^2+Y.^2));
contour(X,Y,Z), xlabel(’x’), ylabel(’y’)� �

48

Programming
Graphics
Programming Style GuideThree-Dimensional Plotting Functions

Function Description
contour(x,y,z) Creates a contour plot.
mesh(x,y,z) Creates a 3D mesh surface plot.
meshc(x,y,z) Same as mesh but draws contours under

the surface.
meshz(x,y,z) Same as mesh but draws vertical refer-

ence lines under the surface.
surf(x,y,z) Creates a shaded 3D mesh surface plot.
surfc(x,y,z) Same as surf but draws contours under

the surface.
[X,Y] = meshgrid(x,y) Creates the matrices X and Y from the

vectors x and y to define a rectangular
grid.

[X,Y] = meshgrid(x) Same as [X,Y]= meshgrid(x,x).
waterfall(x,y,z) Same as mesh but draws mesh lines in

one direction only.

49

Programming
Graphics
Programming Style Guide

a) mesh, b) meshc, c) meshz, d) waterfall

50

Programming
Graphics
Programming Style GuideGuidelines for Making Plots

Should the experimental setup from the exploratory phase be redesigned to
increase conciseness or accuracy?

What parameters should be varied? What variables should be measured?

How are parameters chosen that cannot be varied?

Can tables be converted into curves, bar charts, scatter plots or any other
useful graphics?

Should tables be added in an appendix?

Should a 3D-plot be replaced by collections of 2D-curves?

Can we reduce the number of curves to be displayed?

How many figures are needed?

Should the x-axis be transformed to magnify interesting subranges?

51

Should the x-axis have a logarithmic scale? If so, do the x-values used
for measuring have the same basis as the tick marks?

Make sure the each axis is labeled with the name of the quantity being
plotted and its units.

Make tick marks regularly paced and easy to interpret and interpolate,
eg, 0.2, 0.4, rather than 0.23, 0.46

Use the same scale limits and tick spacing on each plot if you need to
compare information on more than one plot.

Is the range of x-values adequate?

Do we have measurements for the right x-values, i.e., nowhere too dense
or too sparse?

Should the y-axis be transformed to make the interesting part of the
data more visible?

Should the y-axis have a logarithmic scale?

Is it misleading to start the y-range at the smallest measured value?
(if not too much space wasted start from 0)

Clip the range of y-values to exclude useless parts of curves?

Programming
Graphics
Programming Style Guide

Can we use banking to 45o?

Are all curves sufficiently well separated?

Can noise be reduced using more accurate measurements?

Are error bars needed? If so, what should they indicate? Remember that
measurement errors are usually not random variables.

Connect points belonging to the same curve.

Only use splines for connecting points if interpolation is sensible.

Do not connect points belonging to unrelated owners.

Use different point and line styles for different curves.

Use the same styles for corresponding curves in different graphs.

Place labels defining point and line styles in the right order and without
concealing the curves.

53

Programming
Graphics
Programming Style Guide

Captions should make figures self contained.

Give enough information to make experiments reproducible.

Golden ratio rule: make the graph wider than higher [Tufte 1983].

Rule of 7: show at most 7 curves (omit those clearly irrelevant).

Avoid: explaining axes, connecting unrelated points by lines, cryptic
abbreviations, microscopic lettering, pie charts

54

Programming
Graphics
Programming Style GuideExercises

Plot a segment between two points

Measure how the time required to solve a linear system varies with the
order of a matrix for the methods in ex. 5 of week 1 and plot in the
same graph the curves representing the two methods. Vary the size of
the matrix at intervals from 200 to 1000. You can add repetitions at
each size and errorbars in the plot.

55

Programming
Graphics
Programming Style GuideDemos

Try!� �
demo ’matlab’� �

56

Programming
Graphics
Programming Style GuideOutline

1. Programming

2. Graphics
2D Plots
3D Plots

3. Programming Style Guide

57

Programming
Graphics
Programming Style GuideScript and Function Files (M-files)

Modularize

Make interaction clear
make functions interact via arguments (in case structures) rather than
via global variables

Partitioning

Use existing functions
(http://www.mathworks.com/matlabcentral/fileexchange)

Any block of code appearing in more than one m-file should be
considered for packaging as a function

Subfunctions
packaged in the same file as their functions

Test scripts
58

http://www.mathworks.com/matlabcentral/fileexchange

Programming
Graphics
Programming Style GuideProgramming Style

Document your scripts:

author and date of creation

what the script is doing

which input data is required

the function that the user has to call

definitions of variables used in the calculations and units of measurement
for all input and all output variables!

Organize your script as follows:

1. input section (input data and/or input functions)
Eg: x=input("give me a number"), input("enter a key",’s’)

2. calculation section
3. output section (functions for displaying the output on the screen or

files)
Eg: display(A), display("text")

59

Programming
Graphics
Programming Style GuideExample

� �
% Program M3eP32.m
% Program Falling_Speed.m: plots speed of a falling object.
% Created on March 1, 2009 by W. Palm III
%
% Input Variable:
% tfinal = final time (in seconds)
%
% Output Variables:
% t = array of times at which speed is computed (seconds)
% v = array of speeds (meters/second)
%
% Parameter Value:
g = 9.81; % Acceleration in SI units
%
% Input section:
tfinal = input(’Enter the final time in seconds:’);
%
% Calculation section:
dt = tfinal/500;
t = 0:dt:tfinal; % Creates an array of 501 time values.
v = g*t;
%
% Output section:
plot(t,v),xlabel(’Time (seconds)’),ylabel(’Speed (meters/second)’)� �

60

Programming
Graphics
Programming Style GuideDocumentation

Effective documentation can be accomplished with the use of

Proper selection of variable names to reflect the quantities they
represent.

Use of comments within the program.

Use of structure charts.

Use of flowcharts.

A verbal description of the program, often in pseudocode.

61

Programming
Graphics
Programming Style GuideMore Guidelines on Style

More https://sites.google.com/site/matlabstyleguidelines

62

https://sites.google.com/site/matlabstyleguidelines

	Programming
	Graphics
	2D Plots
	3D Plots

	Programming Style Guide

