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(as in [Hoos, Stützle, 2005])

For given problem instance π:

1. search space Sπ

2. evaluation function fπ : S → R

3. neighborhood relation Nπ ⊆ Sπ × Sπ

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}
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After implementation and test of the above components, improvements in
efficiency (ie, computation time) can be achieved by:

A. fast incremental evaluation (ie, delta evaluation)

B. neighborhood pruning

C. clever use of data structures

Improvements in effectiveness, ie, quality, can be achieved by:

D. application of a metaheuristic

E. definition of a larger neighborhood
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I Interchange: size
(n
2

)
and O(|i − j |) evaluation each

I first-improvement: πj , πk

pπj ≤ pπk for improvements, wjTj +wkTk must decrease because jobs
in πj , . . . , πk can only increase their tardiness.

pπj ≥ pπk possible use of auxiliary data structure to speed up the com-
putation

I best-improvement: πj , πk

pπj ≤ pπk for improvements, wjTj + wkTk must decrease at least as
the best interchange found so far because jobs in πj , . . . , πk

can only increase their tardiness.
pπj ≥ pπk possible use of auxiliary data structure to speed up the com-

putation
I Swap: size n − 1 and O(1) evaluation each
I Insert: size (n − 1)2 and O(|i − j |) evaluation each

But possible to speed up with systematic examination by means of
swaps: an interchange is equivalent to |i − j | swaps hence overall
examination takes O(n2)
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Efficient implementations of 2-opt, 2H-opt and 3-opt local search.

A. Delta evaluation already in O(1)

B. Fixed radius search + DLB

C. Data structures

Details at black board and references [Bentley, 1992; Johnson and McGeoch,
2002; Applegate et al., 2006]
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I k-exchange heuristics
I 2-opt
I 2.5-opt
I Or-opt
I 3-opt

I complex neighborhoods
I Lin-Kernighan
I Helsgaun’s Lin-Kernighan
I Dynasearch
I ejection chains approach

Implementations exploit speed-up techniques
1. neighborhood pruning: fixed radius nearest neighborhood search
2. neighborhood lists: restrict exchanges to most interesting candidates
3. don’t look bits: focus perturbative search to “interesting” part
4. sophisticated data structures

Implementation examples by Stützle:
http://www.sls-book.net/implementations.html

13

http://www.sls-book.net/implementations.html


Efficient Local Search
Examples
Computational Complexity
Search Space Properties

TSP data structures
Tour representation:

I determine pos of v in π
I determine succ and prec
I check whether uk is visited between ui and uj

I execute a k-exchange (reversal)
Possible choices:

I |V | < 1.000 array for π and π−1

I |V | < 1.000.000 two level tree
I |V | > 1.000.000 splay tree

Moreover static data structure:
I priority lists
I k-d trees
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Look at implementation of local search for TSP by T. Stützle:

File: http://www.imada.sdu.dk/~marco/DM811/Resources/ls.c� �
two_opt_b(tour); % best improvement, no speedup
two_opt_f(tour); % first improvement, no speedup
two_opt_best(tour); % first improvement including speed−ups (dlbs, fixed radius near

neighbour searches, neughbourhood lists)
two_opt_first(tour); % best improvement including speed−ups (dlbs, fixed radius near

neighbour searches, neughbourhood lists)
three_opt_first(tour); % first improvement� �
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[Appelgate Bixby, Chvátal, Cook, 2006]
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For a local search algorithm to be effective, search initialization
and individual search steps should be efficiently computable.

Complexity class PLS: class of problems for which a local
search algorithm exists with polynomial time complexity for:

I search initialization
I any single search step, including computation of

evaluation function value

For any problem in PLS . . .
I local optimality can be verified in polynomial time
I improving search steps can be computed in polynomial time
I but: finding local optima may require super-polynomial time
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PLS-complete: Among the most difficult problems in PLS;
if for any of these problems local optima can be found
in polynomial time, the same would hold for all problems in PLS.

Some complexity results:
I TSP with k-exchange neighborhood with k > 3

is PLS-complete.

I TSP with 2- or 3-exchange neighborhood is in PLS, but
PLS-completeness is unknown.
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I Problem instance π

I Search space Sπ

I Neighborhood function N : S ⊆ 2S

I Evaluation function fπ : S → R

Definition:
The search landscape L is the vertex-labeled neighborhood graph given by
the triplet L = 〈Sπ,Nπ, fπ〉.
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Transition Graph of Iterative Improvement
Given L = 〈Sπ,Nπ, fπ〉, the transition graph of iterative improvement is a
directed acyclic subgraph obtained from L by deleting all arcs (i , j) for which
it holds that the cost of solution j is worse than or equal to the cost of
solution i .

It can be defined for other algorithms as well and it plays a central role in the
theoretical analysis of proofs of convergence.
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Ideal visualization of landscapes principles

I Simplified landscape
representation I Tabu Search I Guided Local Search

I Iterated Local Search I Evolutionary Alg.
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The behavior and performance of an LS algorithm on a given problem
instance crucially depends on properties of the respective search landscape.

Simple properties:
I search space size |S |
I reachability: solution j is reachable from solution i if neighborhood

graph has a path from i to j .

I strongly connected neighborhood graph:
for each pair i , j of solutions, j is reachable from i .

I weakly optimally connected neighborhood graph:
for each solution i , it contains a path from i to an optimal solution.

I distance between solutions
I neighborhood size (ie, degree of vertices in neigh. graph)
I cost of fully examining the neighborhood
I relation between different neighborhood functions

(if N1(s) ⊆ N2(s) forall s ∈ S then N2 dominates N1)
28
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Goal: providing a formal description of neighborhood functions for the three
main solution representations:

I Permutation
I linear permutation: Single Machine Total Weighted Tardiness Problem
I circular permutation: Traveling Salesman Problem

I Assignment: SAT, CSP
I Set, Partition: Max Independent Set

A neighborhood function N : S → 2S is also defined through an operator.
An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s ′
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Π(n) indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
I πi is the element at position i
I posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

The permutation product π · π′ is the composition (π · π′)i = π′(π(i))

For each π there exists a permutation such that π−1 · π = ι
π−1(i) = posπ(i)

∆N ⊂ Π
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Swap operator
∆S = {δiS |1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator
∆X = {δijX |1 ≤ i < j ≤ n}

δijX (π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

(≡ set of all transpositions)

Insert operator
∆I = {δijI |1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δijI (π) =

{
(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j
(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j
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Reversal (2-edge-exchange)

∆R = {δijR |1 ≤ i < j ≤ n}

δijR(π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δijkB |1 ≤ i < j < k ≤ n}

δijB(π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δijSB |1 ≤ i < j ≤ n}

δijSB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)
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An assignment can be represented as a mapping
σ : {X1 . . .Xn} → {v : v ∈ D, |D| = k}:

σ = {Xi = vi ,Xj = vj , . . .}

One-exchange operator

∆1E = {δil1E |1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
(
σ) =

{
σ′ : σ′(Xi ) = vl and σ′(Xj) = σ(Xj) ∀j 6= i

}
Two-exchange operator

∆2E = {δij2E |1 ≤ i < j ≤ n}

δij2E (σ) =
{
σ′ : σ′(Xi ) = σ(Xj), σ

′(Xj) = σ(Xi ) and σ′(Xl) = σ(Xl)∀l 6= i , j
}
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An assignment can be represented as a partition of objects selected and not
selected s : {X} → {C ,C}
(it can also be represented by a bit string)

One-addition operator
∆1E = {δv1E | v ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ v and C

′
= C \ v}

One-deletion operator
∆1E = {δv1E | v ∈ C}

δv1E
(
s) =

{
s : C ′ = C \ v and C

′
= C ∪ v}

Swap operator
∆1E = {δv1E | v ∈ C , u ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ u \ v and C

′
= C ∪ v \ u}
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Set of paths in L with s, s ′ ∈ S :

Φ(s, s ′) = {(s1, . . . , sh) | s1 = s, sh = s ′ ∀i : 1 ≤ i ≤ h − 1, 〈si , si+1〉 ∈ EL}

If φ = (s1, . . . , sh) ∈ Φ(s, s ′) let |φ| = h be the length of the path; then the
distance between any two solutions s, s ′ is the length of shortest path
between s and s ′ in L:

dN (s, s ′) = min
φ∈Φ(s,s′)

|Φ|

diam(L) = max{dN (s, s ′) | s, s ′ ∈ S} (= maximal distance between any two
candidate solutions)
(= worst-case lower bound for number of search steps required for reaching
(optimal) solutions)

Note: with permutations it is easy to see that:

dN (π, π′) = dN (π−1 · π′, ι)
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Distances for Linear Permutation Representations

I Swap neighborhood operator
computable in O(n2) by the precedence based distance metric:
dS(π, π′) = #{〈i , j〉|1 ≤ i < j ≤ n, posπ′(πj) < posπ′(πi )}.
diam(GN ) = n(n − 1)/2

I Interchange neighborhood operator
Computable in O(n) + O(n) since
dX (π, π′) = dX (π−1 · π′, ι) = n − c(π−1 · π′)
c(π) is the number of disjoint cycles that decompose a permutation.
diam(GNX ) = n − 1

I Insert neighborhood operator
Computable in O(n) + O(n log(n)) since
dI (π, π

′) = dI (π
−1 · π′, ι) = n − |lis(π−1 · π′)| where lis(π) denotes the

length of the longest increasing subsequence.
diam(GNI ) = n − 1 38
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Distances for Circular Permutation Representations

I Reversal neighborhood operator
sorting by reversal is known to be NP-hard
surrogate in TSP: bond distance

I Block moves neighborhood operator
unknown whether it is NP-hard but there does not exist a proved
polynomial-time algorithm

39



Efficient Local Search
Examples
Computational Complexity
Search Space Properties

Distances for Assignment Representations

I Hamming Distance

I An assignment can be seen as a partition of n in k mutually exclusive
non-empty subsets

One-exchange neighborhood operator
The partition-distance d1E (P,P ′) between two partitions P and P ′ is
the minimum number of elements that must be moved between subsets
in P so that the resulting partition equals P ′.

The partition-distance can be computed in polynomial time by solving
an assignment problem. Given the assignment matrix M where in each
cell (i , j) it is |Si ∩ S ′j | with Si ∈ P and S ′j ∈ P ′ and defined A(P,P ′)
the assignment of maximal sum then it is d1E (P,P ′) = n − A(P,P ′)
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Example: Search space size and diameter for the TSP

I Search space size = (n − 1)!/2

I Insert neighborhood
size = (n − 3)n
diameter = n − 2

I 2-exchange neighborhood
size =

(n
2

)
= n · (n − 1)/2

diameter in [n/2, n − 2]

I 3-exchange neighborhood
size =

(n
3

)
= n · (n − 1) · (n − 2)/6

diameter in [n/3, n − 1]

41



Efficient Local Search
Examples
Computational Complexity
Search Space Properties

Example: Search space size and diameter for SAT

SAT instance with n variables, 1-flip neighborhood:
GN = n-dimensional hypercube; diameter of GN = n.
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Let N1 and N2 be two different neighborhood functions for the same
instance (S , f , π) of a combinatorial optimization problem.
If for all solutions s ∈ S we have N1(s) ⊆ N2(s) then we say that N2
dominates N1

Example:

In TSP, 1-insert is dominated by 3-exchange.
(1-insert corresponds to 3-exchange and there are 3-exchanges that are not
1-insert)
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I number of (optimal) solutions |S ′|, solution density |S ′|/|S |

I distribution of solutions within the neighborhood graph

45



Efficient Local Search
Examples
Computational Complexity
Search Space PropertiesPhase Transition for 3-SAT

Random instances  m clauses of n uniformly chosen variables
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SLMIN

SLOPELEDGE

LMAXSLMAX

LMIN

IPLAT

position type > = <

SLMIN (strict local min) + – –
LMIN (local min) + + –
IPLAT (interior plateau) – + –
SLOPE + – +
LEDGE + + +
LMAX (local max) – + +
SLMAX (strict local max) – – +

“+” = present, “–” absent; table entries refer to neighbors with
larger (“>”) , equal (“=”), and smaller (“<”) evaluation function values
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I plateux

I barrier and basins

B4

B3

B1

B2

l2
l1

B4

B3

B1

B2
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