DM841 Discrete Optimization

Lecture 12 Efficiency Issues Neighborhoods and Landscapes

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

- 1. Efficient Local Search
- 2. Examples SMTWTP TSP
- 3. Computational Complexity
- 4. Search Space Properties Introduction Neighborhoods Formalized Distances Landscape Characteristics

- 1. Efficient Local Search
- 2. Examples SMTWTP TSP
- 3. Computational Complexity
- 4. Search Space Properties Introduction Neighborhoods Formalized Distances Landscape Characteristics

Summary: Local Search Algorithms (as in [Hoos, Stützle, 2005])

Efficient Local Search Examples Computational Complexity Search Space Properties

For given problem instance π :

- 1. search space S_{π}
- 2. evaluation function $f_{\pi}: S \to \mathbf{R}$
- 3. neighborhood relation $\mathcal{N}_{\pi} \subseteq \mathcal{S}_{\pi} imes \mathcal{S}_{\pi}$
- 4. set of memory states M_{π}
- 5. initialization function init : $\emptyset \to S_{\pi} \times M_{\pi}$)
- 6. step function step : $S_{\pi} \times M_{\pi} o S_{\pi} imes M_{\pi}$

7. termination predicate terminate : $S_{\pi} \times M_{\pi} \rightarrow \{\top, \bot\}$

After implementation and test of the above components, improvements in efficiency (ie, computation time) can be achieved by:

- A. fast incremental evaluation (ie, delta evaluation)
- B. neighborhood pruning
- C. clever use of data structures

Improvements in effectiveness, ie, quality, can be achieved by:

- D. application of a metaheuristic
- E. definition of a larger neighborhood

Efficient Local Search Examples Computational Complexity Search Space Properties

1. Efficient Local Search

2. Examples

SMTWTP TSP

- 3. Computational Complexity
- 4. Search Space Properties Introduction Neighborhoods Formalized Distances Landscape Characteristics

- 1. Efficient Local Search
- 2. Examples SMTWTP TSP
- 3. Computational Complexity
- 4. Search Space Properties Introduction Neighborhoods Formalized Distances Landscape Characteristics

Single Machine Total Weighted Tardinesser roblem

- ▶ Interchange: size $\binom{n}{2}$ and O(|i-j|) evaluation each
 - first-improvement: π_j, π_k
 - $\begin{array}{ll} p_{\pi_j} \leq p_{\pi_k} & \text{ for improvements, } w_j T_j + w_k T_k \text{ must decrease because jobs} \\ & \text{ in } \pi_j, \dots, \pi_k \text{ can only increase their tardiness.} \end{array}$
 - $p_{\pi_j} \geq p_{\pi_k}$ possible use of auxiliary data structure to speed up the computation
 - best-improvement: π_j, π_k
 - $\begin{array}{l} p_{\pi_j} \leq p_{\pi_k} \quad \mbox{ for improvements, } w_j T_j + w_k T_k \mbox{ must decrease at least as} \\ \mbox{ the best interchange found so far because jobs in } \pi_j, \ldots, \pi_k \\ \mbox{ can only increase their tardiness.} \end{array}$
 - $p_{\pi_j} \geq p_{\pi_k}$ possible use of auxiliary data structure to speed up the computation
- Swap: size n-1 and O(1) evaluation each
- ► Insert: size (n 1)² and O(|i j|) evaluation each But possible to speed up with systematic examination by means of swaps: an interchange is equivalent to |i - j| swaps hence overall examination takes O(n²)

Efficient Local Search

- 1. Efficient Local Search
- 2. Examples SMTWTP TSP
- 3. Computational Complexity
- 4. Search Space Properties Introduction Neighborhoods Formalized Distances Landscape Characteristics

Efficient implementations of 2-opt, 2H-opt and 3-opt local search.

- A. Delta evaluation already in O(1)
- B. Fixed radius search + DLB
- C. Data structures

Details at black board and references [Bentley, 1992; Johnson and McGeoch, 2002; Applegate et al., 2006]

Local Search for the Traveling Salesman Section Complexity

- k-exchange heuristics
 - ► 2-opt
 - ▶ 2.5-opt
 - Or-opt
 - 3-opt
- complex neighborhoods
 - Lin-Kernighan
 - Helsgaun's Lin-Kernighan
 - Dynasearch
 - ejection chains approach

Implementations exploit speed-up techniques

- 1. neighborhood pruning: fixed radius nearest neighborhood search
- 2. neighborhood lists: restrict exchanges to most interesting candidates
- 3. don't look bits: focus perturbative search to "interesting" part
- 4. sophisticated data structures

Implementation examples by Stützle:

http://www.sls-book.net/implementations.html

Efficient Local Search

TSP data structures

Tour representation:

- determine pos of v in π
- determine succ and prec
- check whether u_k is visited between u_i and u_j
- execute a k-exchange (reversal)

Possible choices:

- |V| < 1.000 array for π and π^{-1}
- ▶ |*V*| < 1.000.000 two level tree
- ▶ |V| > 1.000.000 splay tree

Moreover static data structure:

- priority lists
- k-d trees

Look at implementation of local search for TSP by T. Stützle:

File: http://www.imada.sdu.dk/~marco/DM811/Resources/ls.c

k	No. of Cases
2	1
3	4
4	20
5	148
6	1,358
7	15,104
8	198,144
9	2,998,656
10	51,290,496

Table 17.1 Cases for k-opt moves.

[Appelgate Bixby, Chvátal, Cook, 2006]

Efficient Local Search Examples Computational Complexity Search Space Properties

References

- Applegate D.L., Bixby R.E., Chvátal V., and Cook W.J. (2006). The Traveling Salesman Problem: A Computational Study. Princeton University Press.
- Bentley J. (1992). Fast algorithms for geometric traveling salesman problems. ORSA Journal on Computing, 4(4), pp. 387–411.
- Johnson D.S. and McGeoch L.A. (2002). Experimental analysis of heuristics for the STSP. In *The Traveling Salesman Problem and Its Variations*, edited by G. Gutin and A. Punnen, pp. 369–443. Kluwer Academic Publishers, Boston, MA, USA.

- 1. Efficient Local Search
- 2. Examples SMTWTP TSP
- 3. Computational Complexity
- 4. Search Space Properties Introduction Neighborhoods Formalized Distances Landscape Characteristics

Computational Complexity of LS

For a local search algorithm to be effective, search initialization and individual search steps should be efficiently computable.

Complexity class \mathcal{PLS} : class of problems for which a local search algorithm exists with polynomial time complexity for:

- search initialization
- any single search step, including computation of evaluation function value

For any problem in \mathcal{PLS}

- local optimality can be verified in polynomial time
- improving search steps can be computed in polynomial time
- **but:** finding local optima may require super-polynomial time

Computational Complexity of LS

 \mathcal{PLS} -complete: Among the most difficult problems in \mathcal{PLS} ; if for any of these problems local optima can be found in polynomial time, the same would hold for all problems in \mathcal{PLS} .

Some complexity results:

- ► TSP with k-exchange neighborhood with k > 3 is PLS-complete.
- ► TSP with 2- or 3-exchange neighborhood is in *PLS*, but *PLS*-completeness is unknown.

Efficient Local Search Examples Computational Complexity Search Space Properties

- 1. Efficient Local Search
- 2. Examples SMTWTP TSP
- 3. Computational Complexity

4. Search Space Properties

Introduction Neighborhoods Formalized Distances Landscape Characteristics

Efficient Local Search Examples Computational Complexity Search Space Properties

- 1. Efficient Local Search
- 2. Examples SMTWTP TSP
- 3. Computational Complexity
- 4. Search Space Properties Introduction

Neighborhoods Formalized Distances Landscape Characteristics

Definitions

- Problem instance π
- Search space S_{π}
- Neighborhood function $\mathcal{N} : S \subseteq 2^S$
- Evaluation function $f_{\pi}: S \to \mathbf{R}$

Definition:

The search landscape L is the vertex-labeled neighborhood graph given by the triplet $\mathcal{L} = \langle S_{\pi}, N_{\pi}, f_{\pi} \rangle$.

Search Landscape

Efficient Local Search Examples Computational Complexity Search Space Properties

Transition Graph of Iterative Improvement

Given $\mathcal{L} = \langle S_{\pi}, N_{\pi}, f_{\pi} \rangle$, the transition graph of iterative improvement is a directed acyclic subgraph obtained from \mathcal{L} by deleting all arcs (i, j) for which it holds that the cost of solution j is worse than or equal to the cost of solution i.

It can be defined for other algorithms as well and it plays a central role in the theoretical analysis of proofs of convergence.

state

Ideal visualization of landscapes principles

Fundamental Properties

The behavior and performance of an LS algorithm on a given problem instance crucially depends on properties of the respective search landscape.

Simple properties:

- ► search space size |S|
- reachability: solution j is reachable from solution i if neighborhood graph has a path from i to j.
 - strongly connected neighborhood graph: for each pair i, j of solutions, j is reachable from i.
 - weakly optimally connected neighborhood graph: for each solution *i*, it contains a path from *i* to an optimal solution.
- distance between solutions
- neighborhood size (ie, degree of vertices in neigh. graph)
- cost of fully examining the neighborhood
- relation between different neighborhood functions (if N₁(s) ⊆ N₂(s) forall s ∈ S then N₂ dominates N₁)

- 1. Efficient Local Search
- 2. Examples SMTWTP TSP
- 3. Computational Complexity
- 4. Search Space Properties Introduction Neighborhoods Formalized Distances Landscape Characteristics

Neighborhood Operator

Goal: providing a formal description of neighborhood functions for the three main solution representations:

- Permutation
 - linear permutation: Single Machine Total Weighted Tardiness Problem
 - circular permutation: Traveling Salesman Problem
- Assignment: SAT, CSP
- Set, Partition: Max Independent Set

A neighborhood function $\mathcal{N}: S \to 2^S$ is also defined through an operator. An operator Δ is a collection of operator functions $\delta: S \to S$ such that

 $s' \in N(s) \iff \exists \delta \in \Delta \mid \delta(s) = s'$

Permutations

 $\Pi(n)$ indicates the set all permutations of the numbers $\{1, 2, \ldots, n\}$

(1, 2..., n) is the identity permutation ι .

If $\pi \in \Pi(n)$ and $1 \le i \le n$ then:

- π_i is the element at position *i*
- $pos_{\pi}(i)$ is the position of element *i*

Alternatively, a permutation is a bijective function $\pi(i) = \pi_i$

The permutation product $\pi \cdot \pi'$ is the composition $(\pi \cdot \pi')_i = \pi'(\pi(i))$

For each π there exists a permutation such that $\pi^{-1} \cdot \pi = \iota$ $\pi^{-1}(i) = pos_{\pi}(i)$

 $\Delta_N\subset\Pi$

Efficient Local Search Examples Computational Complexity Search Space Properties

Linear Permutations

Swap operator

$$\Delta_{\mathcal{S}} = \{\delta_{\mathcal{S}}^i | 1 \le i \le n\}$$

$$\delta_{\mathcal{S}}^{i}(\pi_{1}\ldots\pi_{i}\pi_{i+1}\ldots\pi_{n})=(\pi_{1}\ldots\pi_{i+1}\pi_{i}\ldots\pi_{n})$$

Interchange operator

$$\Delta_X = \{\delta_X^{ij} | 1 \le i < j \le n\}$$

$$\delta_X^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \pi_{i+1} \dots \pi_{j-1} \pi_i \pi_{j+1} \dots \pi_n)$$

 $(\equiv$ set of all transpositions)

Insert operator

$$\Delta_I = \{\delta_I^{ij} | 1 \le i \le n, 1 \le j \le n, j \ne i\}$$

$$\delta_I^{ij}(\pi) = \begin{cases} (\pi_1 \dots \pi_{i-1} \pi_{i+1} \dots \pi_j \pi_i \pi_{j+1} \dots \pi_n) & i < j \\ (\pi_1 \dots \pi_j \pi_i \pi_{j+1} \dots \pi_{i-1} \pi_{i+1} \dots \pi_n) & i > j \end{cases}$$

Efficient Local Search Examples Computational Complexity Search Space Properties

Circular Permutations

Reversal (2-edge-exchange)

 $\Delta_R = \{\delta_R^{ij} | 1 \le i < j \le n\}$

$$\delta_R^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \dots \pi_i \pi_{j+1} \dots \pi_n)$$

Block moves (3-edge-exchange)

$$\Delta_B = \{ \delta_B^{ijk} | 1 \le i < j < k \le n \}$$

$$\delta_B^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \dots \pi_k \pi_i \dots \pi_{j-1} \pi_{k+1} \dots \pi_n)$$

Short block move (Or-edge-exchange)

$$\Delta_{SB} = \{\delta_{SB}^{ij} | 1 \le i < j \le n\}$$

$$\delta_{SB}^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \pi_{j+1} \pi_{j+2} \pi_i \dots \pi_{j-1} \pi_{j+3} \dots \pi_n)$$

Assignments

An assignment can be represented as a mapping $\sigma : \{X_1 \dots X_n\} \rightarrow \{v : v \in D, |D| = k\}$:

$$\sigma = \{X_i = v_i, X_j = v_j, \ldots\}$$

One-exchange operator

$$\Delta_{1E} = \{ \delta_{1E}^{il} | 1 \le i \le n, 1 \le l \le k \}$$

$$\delta_{1E}^{il}(\sigma) = \{ \sigma' : \sigma'(X_i) = v_l \text{ and } \sigma'(X_j) = \sigma(X_j) \ \forall j \ne i \}$$

Two-exchange operator

$$\Delta_{2E} = \{\delta_{2E}^{ij} | 1 \le i < j \le n\}$$

 $\delta_{2E}^{ij}(\sigma) = \left\{ \sigma' : \sigma'(X_i) = \sigma(X_j), \sigma'(X_j) = \sigma(X_i) \text{ and } \sigma'(X_l) = \sigma(X_l) \forall l \neq i, j \right\}$

Partitioning

An assignment can be represented as a partition of objects selected and not selected $s : \{X\} \rightarrow \{C, \overline{C}\}$ (it can also be represented by a bit string)

One-addition operator

$$\Delta_{1E} = \{\delta_{1E}^{\mathsf{v}} \mid \mathsf{v} \in \overline{\mathsf{C}}\}\$$

$$\delta_{1E}^{\nu}(s) = \left\{s: C' = C \cup v \text{ and } \overline{C}' = \overline{C} \setminus v\right\}$$

One-deletion operator

$$\Delta_{1E} = \{\delta_{1E}^{\mathsf{v}} \mid \mathsf{v} \in \mathsf{C}\}\$$

$$\delta_{1E}^{v}(s) = \left\{s: C' = C \setminus v \text{ and } \overline{C}' = \overline{C} \cup v
ight\}$$

Swap operator

$$\Delta_{1E} = \{\delta_{1E}^{v} \mid v \in C, u \in \overline{C}\}$$

$$\delta_{1E}^{\nu}(s) = \left\{s: C' = C \cup u \setminus v \text{ and } \overline{C}' = \overline{C} \cup v \setminus u\right\}$$

Efficient Local Search Examples Computational Complexity Search Space Properties

- 1. Efficient Local Search
- 2. Examples SMTWTP TSP
- 3. Computational Complexity
- 4. Search Space Properties

Introduction Neighborhoods Formalized Distances Landscape Characteristics

Distances

Set of paths in \mathcal{L} with $s, s' \in S$: $\Phi(s, s') = \{(s_1, \dots, s_h) \mid s_1 = s, s_h = s' \forall i : 1 \le i \le h - 1, \langle s_i, s_{i+1} \rangle \in E_{\mathcal{L}}\}$

If $\phi = (s_1, \ldots, s_h) \in \Phi(s, s')$ let $|\phi| = h$ be the length of the path; then the distance between any two solutions s, s' is the length of shortest path between s and s' in \mathcal{L} :

$$d_\mathcal{N}(s,s') = \min_{\phi \in \Phi(s,s')} |\Phi|$$

 $diam(\mathcal{L}) = max\{d_{\mathcal{N}}(s,s') \mid s,s' \in S\}$ (= maximal distance between any two candidate solutions) (= worst-case lower bound for number of search steps required for reaching (optimal) solutions)

Note: with permutations it is easy to see that:

 $d_{\mathcal{N}}(\pi,\pi') = d_{\mathcal{N}}(\pi^{-1} \cdot \pi',\iota)$

Distances for Linear Permutation Representations

Swap neighborhood operator

computable in $O(n^2)$ by the precedence based distance metric: $d_S(\pi, \pi') = \#\{\langle i, j \rangle | 1 \le i < j \le n, pos_{\pi'}(\pi_j) < pos_{\pi'}(\pi_i)\}.$ $diam(G_N) = n(n-1)/2$

▶ Interchange neighborhood operator Computable in O(n) + O(n) since $d_X(\pi, \pi') = d_X(\pi^{-1} \cdot \pi', \iota) = n - c(\pi^{-1} \cdot \pi')$ $c(\pi)$ is the number of disjoint cycles that decompose a permutation. $\operatorname{diam}(G_{\mathcal{N}_X}) = n - 1$

Insert neighborhood operator Computable in O(n) + O(n log(n)) since d_l(π, π') = d_l(π⁻¹ ⋅ π', ι) = n - |lis(π⁻¹ ⋅ π')| where lis(π) denotes the length of the longest increasing subsequence. diam(G_{N_l}) = n - 1

Efficient Local Search Examples Computational Complexity Search Space Properties

Distances for Circular Permutation Representations

- Reversal neighborhood operator sorting by reversal is known to be NP-hard surrogate in TSP: bond distance
- Block moves neighborhood operator unknown whether it is NP-hard but there does not exist a proved polynomial-time algorithm

Distances for Assignment Representations

- Hamming Distance
- ► An assignment can be seen as a partition of *n* in *k* mutually exclusive non-empty subsets

One-exchange neighborhood operator

The partition-distance $d_{1E}(\mathcal{P}, \mathcal{P}')$ between two partitions \mathcal{P} and \mathcal{P}' is the minimum number of elements that must be moved between subsets in \mathcal{P} so that the resulting partition equals \mathcal{P}' .

The partition-distance can be computed in polynomial time by solving an assignment problem. Given the assignment matrix M where in each cell (i, j) it is $|S_i \cap S'_j|$ with $S_i \in \mathcal{P}$ and $S'_j \in \mathcal{P}'$ and defined $A(\mathcal{P}, \mathcal{P}')$ the assignment of maximal sum then it is $d_{1E}(\mathcal{P}, \mathcal{P}') = n - A(\mathcal{P}, \mathcal{P}')$ Example: Search space size and diameter for the TSP

- Search space size = (n-1)!/2
- ► Insert neighborhood size = (n-3)ndiameter = n-2
- ► 2-exchange neighborhood size = $\binom{n}{2} = n \cdot (n-1)/2$ diameter in $\lfloor n/2, n-2 \rfloor$
- S-exchange neighborhood size = ⁿ₃ = n ⋅ (n − 1) ⋅ (n − 2)/6 diameter in [n/3, n − 1]

Efficient Local Search Examples Computational Complexity Search Space Properties

Example: Search space size and diameter for SAT

SAT instance with *n* variables, 1-flip neighborhood: $G_{\mathcal{N}} = n$ -dimensional hypercube; diameter of $G_{\mathcal{N}} = n$. Let \mathcal{N}_1 and \mathcal{N}_2 be two different neighborhood functions for the same instance (S, f, π) of a combinatorial optimization problem. If for all solutions $s \in S$ we have $N_1(s) \subseteq N_2(s)$ then we say that \mathcal{N}_2 dominates \mathcal{N}_1

Example:

In TSP, 1-insert is dominated by 3-exchange. (1-insert corresponds to 3-exchange and there are 3-exchanges that are not 1-insert)

Efficient Local Search Examples Computational Complexity Search Space Properties

- 1. Efficient Local Search
- 2. Examples SMTWTP TSP
- 3. Computational Complexity
- 4. Search Space Properties

Introduction Neighborhoods Formalized Distances Landscape Characteristics

Other Search Space Properties

- ▶ number of (optimal) solutions |S'|, solution density |S'|/|S|
- distribution of solutions within the neighborhood graph

Phase Transition for 3-SAT

Classification of search positions

position type	>	=	<
SLMIN (strict local min)	+	_	_
LMIN (local min)	+	+	-
IPLAT (interior plateau)		+	_
SLOPE	+	_	+
LEDGE	+	+	+
LMAX (local max)	_	+	+
SLMAX (strict local max)		_	+

"+" = present, "-" absent; table entries refer to neighbors with larger (">"), equal ("="), and smaller ("<") evaluation function values

Other Search Space Properties

Efficient Local Search Examples Computational Complexity Search Space Properties

plateux

barrier and basins

