DM841

Discrete Optimization

Lecture 13
Examples

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

GCP

Outline

1. GCP

GCP

Outline

1. GCP
Preprocessing

GCP

Preprocessing rules

Polynomial time reduction of the graph G to G’ such that given a feasible
k-coloring for G’ it is striaghtforward to derive a feasible k-coloring for G.

Searching for a k-coloring (k fixed)
» Remove under-constrained nodes: v € V. d(v) < k
> Remove subsumed nodes: v € V, if Jue V,uv ¢ E, A(v) C A(u)

> Merge nodes that must have the same color: eg, if any nodes are fully
connected to a clique of size k — 1, then these nodes can be merged into
a single node with all the constraints of its constituents, because they

must have the same color.

GCP

Outline

1. GCP

Construction Heuristics

GCP

Construction Heuristics

» sequential heuristics
1. choose a variable (vertex)

a) static order: random (ROS),
largest degree first, smallest degree last
b) dynamic order: saturation degree (DSATUR) [Brélaz, 1979]

2. choose a value (color): greedy heuristic

Procedure DSATUR
select vertex v uncolored with max degree;

while uncolored vertices do

Procedure ROS
RandomPermutation 7(Vertices);

forall the iin1,...,n do
v = 7(i); select min{c : c not in saturated[v]};
select min{c : ¢ not in saturated[v]}; col[v] := ¢;
add c in saturated[w] for all w adjacent v;

col[v] := ¢;

add c in saturated[w] for all w adjacent v; select uncolored v with max size of

saturated[v];

O(nk + m) ~ O(n?
(ke m)) O(n(n + k) + m) ~ O(n?)

» partitioning heuristics
» recursive largest first (RLF) [Leighton, 1979]
iteratively extract stable sets

RLF [Leighton, 1979]

Procedure Recursive Largest First(G)
In G = (V,E) : input graph;

Out k : upper bound on x(G);

Out ¢ : a coloring ¢ : V +— K of G;

k<« 0

while |V| > 0 do
k< k+1
FindStableSet(V, E, k)

return k

GCP

/* Use an additional color */
/* G = (V,E) is reduced */

11

RLF

Key idea: extract stable sets trying to maximize edges removed.

Procedure FindStableSet(G, k)

In G = (V,E) : input graph P,
In k : color for current stable set

Var P : set of potential vertices for stable set

Var U : set of vertices that cannot go in current stable set

P+ V;, U+
forall the v € P do dy(v) < 0;/* degree induced by U */
while P not empty do
select v in P with max dy;
move v from P to C; V <+ V\ {v}
forall the w € 6p(v) do /* neighbors of v in P */
move w from P to U; E < E\ {v,w}
forall the u € §p(w) do
L du(v) < duy(u)+1

O(m + nA?) ~ O(n?)

GCP

12

Outline

1. GCP

Local Search Modelling

GCP

15

Local Search for Graph coloring

Different choices for the candidate solutions:

GCP

decision vs assignment level of
optimization of colors to V feasibility | Performance
k-fixed complete proper
k-fixed partial proper +++
k-fixed complete improper ++ 4+
k-fixed partial improper —
k-variable complete proper ++
k-variable partial proper —
k-variable complete improper ++
k-variable partial improper —

imply different neighborhood structures and evaluation functions.

16

Local Search for GCP cer

Scheme: k-fixed / complete / improper

Local Search
> Solution representation: var{int} al[lV]|](1..X)
» Evaluation function: conflicting edges or conflicting vertices

» Neighborhood: one-exchange

Naive approach: O(n?k)
Neighborhood examination
for all v € V do
L for all k € 1.k do
| compute A(v, k)

17

Better approach:

> V€ set of vertices involved in a conflict
» A(v, k) stores number of vertices adjacent to v in each color class k

Procedure Initialise A(G,a)
A=0
for each v in V do
for each v in Ay (v) do
L | A(u,a(v)) = A(u,a(v))+1

Procedure Examine(G,N(a))
for each v in V¢ do
for each k €T do
L | compute A(v, k) = A(v, k) — A(v,a(v))

Procedure Update A(G,a,v,k)
for each v in Ay(v) do
A(u,a(v)) = A(u,a(v)) -1
L A(u, k) =A(u, k)+1

Comet examples
Tabu Search

./coloring.co

GCP

19

./coloring.co

GCP

Randomized lterative Improvement

1-wp
select vin Ve selectv,c
randomly randomly
best colour is not best colour is
less recent less recent
select the
best colouc
select the select less
best colouc recent colouc

21

Guided Local Search e

» evaluation function: f/(s) = f(s) + A~ 3150 w; - 1(C)
w; is the penalty cost associated to edge /;
li(s) is an indicator function that takes the value 1 if edge / causes a
colour conflict in s and 0 otherwise;
parameter \

» penalty weights are initialised to 0

» updated each time lterative Improvement reaches a local optimum in f7;

increment the penalties of all edges with maximal utility.
1
1+ w; ’

u; = /,'(S) .

» once a local optimum is reached, the search continues for sw
non-worsening exchanges (side walk moves) before the evaluation
function ' is updated. Update of w; and f’ is done in the worst case in

O(k|V[?).

22

Local Search for GCP cep

Scheme: k-variable / complete / proper

Local Search
» Solution representation: var{int} allV|](1..K)

» Neighborhood: one-exchange restricted to feasible moves
Kempe chains

. . . o k 2
» Evaluation function: f(s) =—> . ,|C
favours few large color classes wrt. many small color classes

23

Local Search for GCP cep

Iterated Greedy

Scheme: k-variable / complete / proper

Local Search
» Solution representation: var{int} a[|V|](1..K)
» Neighborhood: permutation of color classes + greedy algorithm

» Evaluation function: number of colors

Theorem

Let v be a k-coloring of a graph G and 7 a permutation such that

if o(Vr(i)) = ©(Vr(m)) = ¢ then p(vy()) = ¢, Vi <j < m.

Applying the greedy algorithm to w will produce a coloring using k or fewer
colors.

24

Local Search for GCP cer

Scheme: k-variable / complete / improper

Local Search
» Solution representation: var{int} allV|](1..K)
» Neighborhood: one-exchange
» Evaluation function: f(s) = — > 1 |G|+ >, 2| G &

Ev. function chosen in such a way that an improvement in feasibility
(in the worst case by coloring a vertex to a new color class)

offsets any improvement in solution quality

(in the best case by moving a vertex to the first color class).

25

Local Search for GCP cep

[Bléchliger and N. Zufferey, 2008]
Scheme: k-fixed / partial / proper

Local Search
> Solution representation: collection of k + 1 sets + assignment vector
» Evaluation function: size of impasse class (weighted by degree)

» Neighborhood: i-swap

26

GCP

References

Brélaz D. (1979). New methods to color the vertices of a graph. Communications
of the ACM, 22(4), pp. 251-256.

Leighton F.T. (1979). A graph coloring algorithm for large scheduling problems.
Journal of Research of the National Bureau of Standards, 84(6), pp. 489-506.

27

	GCP
	Preprocessing
	Construction Heuristics
	Local Search Modelling

