
DM841

Discrete Optimization

Lecture 13
Examples

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

GCPOutline

1. GCP
Preprocessing
Construction Heuristics
Local Search Modelling

2

GCPOutline

1. GCP
Preprocessing
Construction Heuristics
Local Search Modelling

3

GCPPreprocessing rules

Polynomial time reduction of the graph G to G ′ such that given a feasible
k-coloring for G ′ it is striaghtforward to derive a feasible k-coloring for G .

Searching for a k-coloring (k fixed)
I Remove under-constrained nodes: v ∈ V , d(v) < k
I Remove subsumed nodes: v ∈ V , if ∃u ∈ V , uv 6∈ E ,A(v) ⊆ A(u)

I Merge nodes that must have the same color: eg, if any nodes are fully
connected to a clique of size k − 1, then these nodes can be merged into
a single node with all the constraints of its constituents, because they
must have the same color.

4

GCPOutline

1. GCP
Preprocessing
Construction Heuristics
Local Search Modelling

5

GCPConstruction Heuristics

I sequential heuristics
1. choose a variable (vertex)

a) static order: random (ROS),
largest degree first, smallest degree last

b) dynamic order: saturation degree (DSATUR) [Brélaz, 1979]

2. choose a value (color): greedy heuristic

Procedure ROS
RandomPermutation π(Vertices);
forall the i in 1, . . . , n do

v := π(i);
select min{c : c not in saturated[v]};
col[v] := c;
add c in saturated[w] for all w adjacent v ;

O(nk + m) O(n2)

Procedure DSATUR
select vertex v uncolored with max degree;
while uncolored vertices do

select min{c : c not in saturated[v]};
col[v] := c;
add c in saturated[w] for all w adjacent v ;
select uncolored v with max size of

saturated[v];

O(n(n + k) + m) O(n2)

I partitioning heuristics
I recursive largest first (RLF) [Leighton, 1979]

iteratively extract stable sets

9

GCPRLF [Leighton, 1979]

Procedure Recursive Largest First(G)
In G = (V ,E) : input graph;
Out k : upper bound on χ(G);
Out c : a coloring c : V 7→ K of G ;

k ← 0
while |V | > 0 do

k ← k + 1 /* Use an additional color */
FindStableSet(V ,E , k) /* G = (V ,E) is reduced */

return k

11

GCPRLF

Key idea: extract stable sets trying to maximize edges removed.

Procedure FindStableSet(G , k)
In G = (V ,E) : input graph
In k : color for current stable set
Var P : set of potential vertices for stable set
Var U : set of vertices that cannot go in current stable set

P ← V ; U ← ∅;
forall the v ∈ P do dU(v)← 0;/* degree induced by U */
while P not empty do

select v in P with max dU ;
move v from P to Ck ; V ← V \ {v}
forall the w ∈ δP (v) do /* neighbors of v in P */

move w from P to U; E ← E \ {v ,w}
forall the u ∈ δP (w) do

dU(u)← dU(u) + 1

O(m + n∆2) O(n3)

U

CkP

12

GCPOutline

1. GCP
Preprocessing
Construction Heuristics
Local Search Modelling

15

GCPLocal Search for Graph coloring

Different choices for the candidate solutions:

decision vs assignment level of
optimization of colors to V feasibility Performance

k-fixed complete proper
k-fixed partial proper + + +
k-fixed complete improper + + +
k-fixed partial improper −

k-variable complete proper ++
k-variable partial proper −
k-variable complete improper ++
k-variable partial improper −

imply different neighborhood structures and evaluation functions.

16

GCPLocal Search for GCP

Scheme: k-fixed / complete / improper

Local Search
I Solution representation: var{int} a[|V|](1..K)

I Evaluation function: conflicting edges or conflicting vertices
I Neighborhood: one-exchange

Naive approach: O(n2k)
Neighborhood examination
for all v ∈ V do

for all k ∈ 1..k do
compute ∆(v , k)

17

Better approach:

I V c set of vertices involved in a conflict
I ∆(v , k) stores number of vertices adjacent to v in each color class k

Procedure Initialise_∆(G ,a)
∆ = 0
for each v in V do

for each u in AV (v) do
∆(u, a(v)) = ∆(u, a(v)) + 1

Procedure Examine(G ,N(a))
for each v in V c do

for each k ∈ Γ do
compute ∆(v , k) = ∆(v , k)−∆(v , a(v))

Procedure Update_∆(G ,a,v ,k)
for each u in AV (v) do

∆(u, a(v)) = ∆(u, a(v))− 1
∆(u, k) = ∆(u, k) + 1

GCPComet examples
Tabu Search

./coloring.co

19

./coloring.co

GCPRandomized Iterative Improvement

select the
best colour

select less
recent colour

select the
best colour

p

select
randomly

less recent

wp

less recent

c

v in Vc

c

c

1−p

1−wp

select v,c
randomly

best colour is not best colour is

21

GCPGuided Local Search

I evaluation function: f ′(s) = f (s) + λ ·
∑|E |

i=1 wi · Ii (C)
wi is the penalty cost associated to edge i ;
Ii (s) is an indicator function that takes the value 1 if edge i causes a
colour conflict in s and 0 otherwise;
parameter λ

I penalty weights are initialised to 0

I updated each time Iterative Improvement reaches a local optimum in f ′;
increment the penalties of all edges with maximal utility.

ui = Ii (s) · 1
1 + wi

.

I once a local optimum is reached, the search continues for sw
non-worsening exchanges (side walk moves) before the evaluation
function f ′ is updated. Update of wi and f ′ is done in the worst case in
O(k|V |2).

22

GCPLocal Search for GCP

Scheme: k-variable / complete / proper

Local Search
I Solution representation: var{int} a[|V|](1..K)

I Neighborhood: one-exchange restricted to feasible moves
Kempe chains

C Cji

I Evaluation function: f (s) = −
∑k

i=1 |Ci |2
favours few large color classes wrt. many small color classes

23

GCPLocal Search for GCP
Iterated Greedy

Scheme: k-variable / complete / proper

Local Search
I Solution representation: var{int} a[|V|](1..K)

I Neighborhood: permutation of color classes + greedy algorithm
I Evaluation function: number of colors

Theorem
Let ϕ be a k-coloring of a graph G and π a permutation such that
if ϕ(vπ(i)) = ϕ(vπ(m)) = c then ϕ(vπ(j)) = c ,∀i ≤ j ≤ m.
Applying the greedy algorithm to π will produce a coloring using k or fewer
colors.

24

GCPLocal Search for GCP

Scheme: k-variable / complete / improper

Local Search
I Solution representation: var{int} a[|V|](1..K)

I Neighborhood: one-exchange
I Evaluation function: f (s) = −

∑k
i=1 |Ci |2 +

∑k
i=1 2|Ci ||Ei |

Ev. function chosen in such a way that an improvement in feasibility
(in the worst case by coloring a vertex to a new color class)
offsets any improvement in solution quality
(in the best case by moving a vertex to the first color class).

25

GCPLocal Search for GCP

[Blöchliger and N. Zufferey, 2008]
Scheme: k-fixed / partial / proper

Local Search
I Solution representation: collection of k + 1 sets + assignment vector
I Evaluation function: size of impasse class (weighted by degree)
I Neighborhood: i-swap

26

GCPReferences

Brélaz D. (1979). New methods to color the vertices of a graph. Communications
of the ACM, 22(4), pp. 251–256.

Leighton F.T. (1979). A graph coloring algorithm for large scheduling problems.
Journal of Research of the National Bureau of Standards, 84(6), pp. 489–506.

27

	GCP
	Preprocessing
	Construction Heuristics
	Local Search Modelling

