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GCP

Preprocessing rules

Polynomial time reduction of the graph G to G’ such that given a feasible
k-coloring for G’ it is striaghtforward to derive a feasible k-coloring for G.

Searching for a k-coloring (k fixed)
» Remove under-constrained nodes: v € V. d(v) < k
> Remove subsumed nodes: v € V, if Jue V,uv ¢ E, A(v) C A(u)

> Merge nodes that must have the same color: eg, if any nodes are fully
connected to a clique of size k — 1, then these nodes can be merged into
a single node with all the constraints of its constituents, because they

must have the same color.
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GCP

Construction Heuristics

» sequential heuristics
1. choose a variable (vertex)

a) static order: random (ROS),
largest degree first, smallest degree last
b) dynamic order: saturation degree (DSATUR) [Brélaz, 1979]

2. choose a value (color): greedy heuristic

Procedure DSATUR
select vertex v uncolored with max degree;

while uncolored vertices do

Procedure ROS
RandomPermutation 7(Vertices);

forall the iin1,...,n do
v = 7(i); select min{c : c not in saturated[v]};
select min{c : ¢ not in saturated[v]}; col[v] := ¢;
add c in saturated[w] for all w adjacent v;

col[v] := ¢;

add c in saturated[w] for all w adjacent v; select uncolored v with max size of

saturated[v];

O(nk + m) ~ O(n?
(ke m) ) O(n(n + k) + m) ~ O(n?)

» partitioning heuristics
» recursive largest first (RLF) [Leighton, 1979]
iteratively extract stable sets



RLF [Leighton, 1979]

Procedure Recursive Largest First(G)
In G = (V,E) : input graph;

Out k : upper bound on x(G);

Out ¢ : a coloring ¢ : V +— K of G;

k<« 0

while |V| > 0 do
k< k+1
FindStableSet(V, E, k)

return k

GCP

/* Use an additional color */
/* G = (V,E) is reduced */

11



RLF

Key idea: extract stable sets trying to maximize edges removed.

Procedure FindStableSet(G, k)

In G = (V,E) : input graph P,
In k : color for current stable set

Var P : set of potential vertices for stable set

Var U : set of vertices that cannot go in current stable set

P+ V;, U+
forall the v € P do dy(v) < 0;/* degree induced by U */
while P not empty do
select v in P with max dy;
move v from P to C; V <+ V\ {v}
forall the w € 6p(v) do  /* neighbors of v in P */
move w from P to U; E < E\ {v,w}
forall the u € §p(w) do
L du(v) < duy(u)+1

O(m + nA?) ~ O(n?)

GCP
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Local Search for Graph coloring

Different choices for the candidate solutions:

GCP

decision vs assignment level of
optimization  of colors to V  feasibility | Performance
k-fixed complete proper
k-fixed partial proper +++
k-fixed complete  improper ++ 4+
k-fixed partial  improper —
k-variable complete proper ++
k-variable partial proper —
k-variable complete  improper ++
k-variable partial  improper —

imply different neighborhood structures and evaluation functions.
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Local Search for GCP cer

Scheme: k-fixed / complete / improper

Local Search
> Solution representation: var{int} al[lV]|](1..X)
» Evaluation function: conflicting edges or conflicting vertices

» Neighborhood: one-exchange

Naive approach: O(n?k)
Neighborhood examination
for all v € V do
L for all k € 1.k do
| compute A(v, k)
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Better approach:

> V€ set of vertices involved in a conflict
» A(v, k) stores number of vertices adjacent to v in each color class k

Procedure Initialise  A(G,a)
A=0
for each v in V do
for each v in Ay (v) do
L | A(u,a(v)) = A(u,a(v))+1

Procedure Examine(G,N(a))
for each v in V¢ do
for each k €T do
L | compute A(v, k) = A(v, k) — A(v,a(v))

Procedure Update A(G,a,v,k)
for each v in Ay(v) do
A(u,a(v)) = A(u,a(v)) -1
L A(u, k) =A(u, k)+1



Comet examples
Tabu Search

./coloring.co

GCP

19


./coloring.co

GCP

Randomized lterative Improvement

1-wp
select vin Ve selectv,c
randomly randomly
best colour is not best colour is
less recent less recent
select the
best colouc
select the select less
best colouc recent colouc
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Guided Local Search e

» evaluation function: f/(s) = f(s) + A~ 3150 w; - 1(C)
w; is the penalty cost associated to edge /;
li(s) is an indicator function that takes the value 1 if edge / causes a
colour conflict in s and 0 otherwise;
parameter \

» penalty weights are initialised to 0

» updated each time lterative Improvement reaches a local optimum in f7;

increment the penalties of all edges with maximal utility.
1
1+ w; ’

u; = /,'(S) .

» once a local optimum is reached, the search continues for sw
non-worsening exchanges (side walk moves) before the evaluation
function ' is updated. Update of w; and f’ is done in the worst case in

O(k|V[?).
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Local Search for GCP cep

Scheme: k-variable / complete / proper

Local Search
» Solution representation: var{int} allV|](1..K)

» Neighborhood: one-exchange restricted to feasible moves
Kempe chains

. . . o k 2
» Evaluation function: f(s) =—> . ,|C
favours few large color classes wrt. many small color classes
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Local Search for GCP cep

Iterated Greedy

Scheme: k-variable / complete / proper

Local Search
» Solution representation: var{int} a[|V|](1..K)
» Neighborhood: permutation of color classes + greedy algorithm

» Evaluation function: number of colors

Theorem

Let v be a k-coloring of a graph G and 7 a permutation such that

if o(Vr(i)) = ©(Vr(m)) = ¢ then p(vy()) = ¢, Vi <j < m.

Applying the greedy algorithm to w will produce a coloring using k or fewer
colors.
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Local Search for GCP cer

Scheme: k-variable / complete / improper

Local Search
» Solution representation: var{int} allV|](1..K)
» Neighborhood: one-exchange
» Evaluation function: f(s) = — > 1 |G|+ >, 2| G &

Ev. function chosen in such a way that an improvement in feasibility
(in the worst case by coloring a vertex to a new color class)

offsets any improvement in solution quality

(in the best case by moving a vertex to the first color class).
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Local Search for GCP cep

[Bléchliger and N. Zufferey, 2008]
Scheme: k-fixed / partial / proper

Local Search
> Solution representation: collection of k + 1 sets + assignment vector
» Evaluation function: size of impasse class (weighted by degree)

» Neighborhood: i-swap
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