
DM811

Heuristics for Combinatorial Optimization

Compendium

Basic Concepts in Algorithmics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

2

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

3

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

4

Graphs

Graphs are combinatorial structures useful to model several applications

Terminology:

I G = (V,E), E ⊆ V × V , vertices, edges, n = |V |,m = |E|, undirected
graphs, subgraph, induced subgraph

I e = (u, v) ∈ E, e incident on u and v; u, v adjacent, edge weight or cost

I particular cases often omitted: self-loops, multiple parallel edges

I degree, δ, ∆, outdegree, indegree

I path P =< v0, v1, . . . , vk >, (v0, v1) ∈ E, . . . , (vk−1, vk) ∈ E,
< v0, v1 > has length 2, < v0, v1, v2, v0 > cycle, walk, path

I arcs, directed acyclic graph

I digraph strongly connected (∀u, v ∃(uv)-path), strongly connected
components

I G is a tree (=⇒ ∃ path between any two vertices) ⇐⇒ G is connected
and has n− 1 edges ⇐⇒ G is connected and contains no cycles.

I parent, children, sibling, height, depth

5

Representing Graphs

Operations:

I Access associated information (NodeArray, EdgeArray, Hashes)

I Navigation: access outgoing edges

I Edge queries: given u and v is there an edge?

I Update: add remove edges, vertices

Data Structures:

I Edge sequences

I Adjacency arrays

I Adjacency lists

I Adjacency matrix

How to choose?

I it depends on the graphs and the
application

I if time and space not crucial no need to
customize the structures

I use interfaces that make easy to change
the data structure

I libraries o�er di�erent choices (Boost,
lemon, Java jdsl.graph)

6

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

7

Motivations

Questions:

1. How good is the algorithm designed?

2. How hard, computationally, is a given a problem to solve
using the most e�cient algorithm for that problem?

1. Asymptotic notation, running time bounds
Approximation theory

2. Complexity theory

8

Asymptotic notation

n ∈ N instance size; π ∈ Πn instance π belonging to class Πn

max time worst case T (n) = max{T (π) : π ∈ Πn}
average time average case T (n) = 1

|Πn|{
∑
π T (π) : π ∈ Πn}

min time best case T (n) = min{T (π) : π ∈ Πn}

Growth rate or asymptotic analysis

f(n) and g(n) same growth rate if c ≤ f(n)
g(n) ≤ d for n large

f(n) grows faster than g(n) if f(n) ≥ c · g(n) for all c and n large

big O O(f) = {g(n) : ∃c > 0,∀n > n0 : g(n) ≤ c · f(n)}
big omega Ω(f) = {g(n) : ∃c > 0,∀n > n0 : g(n) ≥ c · f(n)}
theta Θ(f) = O(f) ∩ Ω(f)

(little o o(f) = {g : g grows strictly more slowly than f})

9

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

10

Machine model

For asymptotic analysis we use RAM machine

I sequential, single processor unit

I all memory access take same amount of time

It is an abstraction from machine architecture: it ignores caches, memories
hierarchies, parallel processing (SIMD, multi-threading), etc.

Total execution of a program = total number of instructions executed

We are not interested in constant and lower order terms

11

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

12

Pseudo-code

We express algorithms in natural language and mathematical notation, and in
pseudo-code, which is an abstraction from programming languages C, C++,
Java, etc.

(In implementation you can choose your favorite language)

Programs must be correct.
Certifying algorithm: computes a certi�cate for a post condition (without
increasing asymptotic running time)

13

Good Algorithms

We say that an algorithm A is

E�cient = good = polynomial time = polytime
i�

there exists polynomial p(n) such that T (A) = O(p(n))

There are problems for which no polytime algorithm is known.
This course is about those problems.

Complexity theory classi�es problems

14

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

16

Complexity Classes
[Garey and Johnson, 1979]

Consider a Decision Search Problem Π:

I Π is in P if ∃ algorithm A that �nds a solution in polynomial time.

I Π is in NP if ∃ veri�cation algorithm A that veri�es whether a binary
certi�cate is a solution to the problem in polynomial time.

I a search problem Π′ is (polynomially) reducible to Π (Π′ −→ Π) if there
exists an algorithm A that solves Π′ by using a hypothetical subroutine
S for Π and except for S everything runs in polynomial time.

I Π is NP -complete if

1. it is in NP

2. there exists some NP-complete problem Π′ that reduces to Π (Π′ −→ Π)

I If Π satis�es property 2, but not necessarily property 1, we say that it is
NP -hard:

17

I NP : Class of problems that can be solved in polynomial time by a
non-deterministic machine.

Note: non-deterministic 6= randomized;
non-deterministic machines are idealized models of computation that
have the ability to make perfect guesses.

I NP -complete: Among the most di�cult problems in NP ; believed to
have at least exponential time-complexity for any realistic machine or
programming model.

I NP -hard: At least as di�cult as the most di�cult problems in NP , but
possibly not in NP -complete (i.e., may have even worse complexity than
NP -complete problems).

18

NP-Completeness Proofs

19

Many combinatorial problems are hard
but some problems can be solved e�ciently

I Longest path problem is NP -hard
but not shortest path problem

I SAT for 3-CNF is NP -complete
but not 2-CNF (linear time algorithm)

I Hamiltonian path is NP -complete
but not the Eulerian path problem

I TSP on Euclidean instances is NP -hard
but not where all vertices lie on a circle.

20

An online compendium on the computational complexity
of optimization problems:
http://www.nada.kth.se/~viggo/problemlist/compendium.html

21

http://www.nada.kth.se/~viggo/problemlist/compendium.html

Outline

1. Basic Concepts from Previous Courses
Graphs
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

22

Theoretical Analysis

I Worst-case analysis (runtime and quality):
worst performance of algorithms over all possible instances

I Probabilistic analysis (runtime):
average-case performance over a given probability distribution of
instances

I Average-case (runtime):
overall possible instances for randomized algorithms

I Asymptotic convergence results (quality)

I Approximation of optimal solutions:
sometimes possible in polynomial time (e.g., Euclidean TSP),
but in many cases also intractable (e.g., general TSP);

I Domination

I Algorithm invariance

23

Approximation Algorithms

De�nition: Approximation Algorithms

An algorithm A is said to be a δ-approximation algorithm if it runs in
polynomial time and for every problem instance π with optimal solution value
OPT (π)

minimization: A(π)
OPT (π) ≤ δ δ ≥ 1

maximization: A(π)
OPT (π) ≥ δ δ ≤ 1

(δ is called worst case bound, worst case performance, approximation factor,
approximation ratio, performance bound, performance ratio, error ratio)

24

Approximation Algorithms

De�nition: Polynomial approximation scheme

A family of approximation algorithms for a problem Π, {Aε}ε, is called a
polynomial approximation scheme (PAS), if algorithm Aε is a
(1 + ε)-approximation algorithm and its running time is polynomial in the size
of the input for each �xed ε

De�nition: Fully polynomial approximation scheme

A family of approximation algorithms for a problem Π, {Aε}ε, is called a fully
polynomial approximation scheme (FPAS), if algorithm Aε is a
(1 + ε)-approximation algorithm and its running time is polynomial in the size
of the input and 1/ε

25

Useful Graph Algorithms

I Breadth �rst, depth �rst search, traversal

I Transitive closure

I Topological sorting

I (Strongly) connected components

I Shortest Path

I Minimum Spanning Tree

I Matching

26

Randomized Algorithms

Most often algorithms are randomized. Why?

I possibility of gains from re-runs

I adversary argument

I structural simplicity for comparable average performance,

I speed up,

I avoiding loops in the search

I ...

27

Randomized Algorithms

De�nition: Randomized Algorithms

Their running time depends on the random choices made.
Hence, the running time is a random variable.

Las Vegas algorithm: it always gives the correct result but in random runtime
(with �nite expected value).

Monte Carlo algorithm: the result is not guaranteed correct. Typically halted
due to bouned resources.

28

Randomized Heuristics

In the case of randomized optimization heuristics
both solution quality and runtime are random variables.

We distinguish:

I single-pass heuristics (denoted Aa): have an embedded termination, for
example, upon reaching a certain state
(generalized optimization Las Vegas algorithms [B2])

I asymptotic heuristics (denoted A∞): do not have an embedded
termination and they might improve their solution asymptotically
(both probabilistically approximately complete
and essentially incomplete [B2])

29

	Basic Concepts from Previous Courses
	Graphs
	Notation and runtime
	Machine model
	Pseudo-code
	Computational Complexity
	Analysis of Algorithms

