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1. Course Introduction

2. Combinatorial Optimization and Terminology

3. Basic Concepts from Algorithmics
(Review slides and Cormen, Leiserson, Rivest and Stein. Introduction to
algorithms. 2001)
Graphs • Notation and runtime • Machine model • Pseudo-code •
Computational Complexity • Analysis of Algorithms
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General problem vs problem instance:

General problem Π:
I Given any set of points X in a square, find a shortest Hamiltonian cycle
I Solution: Algorithm that finds shortest Hamiltonian cycle for any X

Problem instantiation π = Π(I ):
I Given a specific set of points I in the square, find a shortest Hamiltonian

cycle
I Solution: Shortest Hamiltonian cycle for I

Problems can be formalized on sets of problem instances I (instance classes)
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Types of TSP instances:
I Symmetric: For all edges uv of the given graph G , vu is also in G , and

w(uv) = w(vu).
Otherwise: asymmetric.

I Euclidean: Vertices = points in an Euclidean space,
weight function = Euclidean distance metric.

I Geographic: Vertices = points on a sphere,
weight function = geographic (great circle) distance.
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Instance classes
I Real-life applications (geographic, VLSI)
I Random Euclidean
I Random Clustered Euclidean
I Random Distance

Available at the TSPLIB (more than 100 instances upto 85.900 cities)
and at the 8th DIMACS challenge
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A Method is a general framework for the development of a solution
algorithm. It is not problem-specific.

An Algorithm (or algorithmic model) is a problem-specific template that
leaves only some practical details unspecified.
The level of detail may vary:

I minimally instantiated (few details, algorithm template)
I lowly instantiated (which data structure to use)
I highly instantiated (programming tricks that give speedups)
I maximally instantiated (details specific of a programming language and

computer architecture)

A Program is the formulation of an algorithm in a programming language.

An algorithm can thus be regarded as a class of computer programs
(its implementations)
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I Exact methods (complete)
guaranteed to find (optimal) solution,
or to determine that no solution exists (eg, systematic enumeration)

I Search algorithms (backtracking, branch and bound)
I Dynamic programming
I Constraint programming
I Integer programming
I Dedicated Algorithms

I Approximation methods
worst-case solution guarantee
http://www.nada.kth.se/~viggo/problemlist/compendium.html

I Heuristic (Approximate) methods (incomplete)
not guaranteed to find (optimal) solution,
and unable to prove that no solution exists
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Problem specific methods:

I Dynamic programming (knapsack)
I Dedicated algorithms (greedy, shortest path)

General methods:

I Integer (Mathematical) Programming
I Constraint Programming

Generic methods:
U Allow to save development time
D Do not achieve same performance as specific algorithms
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Get inspired by approach to problem solving in human mind
[A. Newell and H.A. Simon. “Computer science as empirical inquiry: symbols and
search.” Communications of the ACM, ACM, 1976, 19(3)]

I effective rules
I trial and error

Applications:
I Optimization
I But also in Psychology, Economics, Management [Tversky, A.; Kahneman,

D. (1974). "Judgment under uncertainty: Heuristics and biases". Science 185]

Basis on empirical evidence rather than mathematical logic. Getting things
done in the given time.
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Distribution of technology used at Google for optimization applications
developed by the operations research team

[Slide presented by Laurent Perron on OR-Tools at CP2013]
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Satisfiability problem in propositional logic

Does there exist a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)
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I From 100 variables, 200 constraints (early 90s)
to 1,000,000 vars. and 20,000,000 cls. in 20 years.

I Applications:
Hardware and Software Verification, Planning, Scheduling, Optimal
Control, Protocol Design, Routing, Combinatorial problems, Equivalence
Checking, etc.

I SAT used to solve many other problems!
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Satisfiability problem in propositional logic

Definitions:

I Formula in propositional logic: well-formed string that may contain
I propositional variables x1, x2, . . . , xn;
I truth values > (‘true’), ⊥ (‘false’);
I operators ¬ (‘not’), ∧ (‘and’), ∨ (‘or’);
I parentheses (for operator nesting).

I Model (or satisfying assignment) of a formula F : Assignment of truth
values to the variables in F under which F becomes true (under the
usual interpretation of the logical operators)

I Formula F is satisfiable iff there exists at least one model of F ,
unsatisfiable otherwise.
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Propositional logic: operators: ¬P,P ∧ Q,P ∨ Q,P =⇒ Q,P ⇔ Q

To conjunctive normal form:

I replace α⇔ with (α =⇒ β) ∧ (β =⇒ α)

I replace α =⇒ β with ¬α ∨ β

I ¬ must appear only in literals, hence move ¬ inwards

I distributive law for ∨ over ∧:

(α ∨ (β ∨ γ) ≡ (α ∨ β) ∧ (α ∨ γ))
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SAT Problem (decision problem, search variant):
I Given: Formula F in propositional logic
I Task: Find an assignment of truth values to variables in F that renders

F true, or decide that no such assignment exists.

SAT: A simple example
I Given: Formula F := (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

I Task: Find an assignment of truth values to variables x1, x2 that renders
F true, or decide that no such assignment exists.

21



Combinatorial Optimization
Exact Methods: Examples

Definitions:

I A formula is in conjunctive normal form (CNF) iff it is of the form

m∧
i=1

ki∨
j=1

lij = (l11 ∨ . . . ∨ l1k1) ∧ . . . ∧ (lm1 ∨ . . . ∨ lmkm )

where each literal lij is a propositional variable or its negation. The
disjunctions ci = (li1 ∨ . . . ∨ liki ) are called clauses.

I A formula is in k-CNF iff it is in CNF and all clauses contain exactly k
literals (i.e., for all i , ki = k).

I In many cases, the restriction of SAT to CNF formulae
is considered.

I For every propositional formula, there is an equivalent formula in 3-CNF.
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Example:

F := ∧ (¬x2 ∨ x1)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
∧ (x1 ∨ x2)
∧ (¬x4 ∨ x3)
∧ (¬x5 ∨ x3)

I F is in CNF.
I Is F satisfiable?

Yes, e.g., x1 := x2 := >, x3 := x4 := x5 := ⊥ is a model of F .
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Not all instances are hard:

I Definite clauses: exactly one literal in the clause is positive. Eg:

¬β ∨ ¬γ ∨ α

I Horn clauses: at most one literal is positive.

I Easy interpretation: α ∧ β =⇒ γ  ¬α ∨ ¬β ∨ γ

I inference is easy by forward checking, linear time
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I How to model an optimization problem

I choose some decision variables
they typically encode the result we are interested into

I express the problem constraints in terms of these variables
they specify what the solutions to the problem are

I express the objective function
the objective function specifies the quality of each solution

I The result is an optimization model

I It is a declarative formulation
specify the “what”, not the “how”

I There may be many ways to model an optimization problem
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Standard IP formulation: Let xl be a 0–1 variable equal to 1 whenever the
literal l takes value true and 0 otherwise.
Let c+ be the set of literals in clause c ∈ C that appear as positive and c−

the set of variables that appear as negated.

min 1

s.t.
∑
l∈c+

xl +
∑
l∈c−

(1− xl) = 1, ∀c ∈ C ,

xl ∈ {0, 1}, ∀l ∈ L
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Definition

(Maximum) K -Satisfiability (SAT)
Input: A set U of variables, a collection C of disjunctive clauses of at most k
literals, where a literal is a variable or a negated variable in U. k is a
constant, k > 2.
Task: A truth assignment for U or a truth assignment that maximizes the
number of clauses satisfied.

MAX-SAT (optimization problem)

Which is the maximal number of clauses satisfiable in a propositional logic
formula F?
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Davis Putam, Logenmann & Loveland (DPLL)
Recursive depth-first enumeration of possible models

1. Early termination:
a clause is true if any of its literals are true
a sentence is false if any of its clauses are false, which occurs when all its
literals are false

2. Pure literal heuristic:
pure literal is one that appears with same sign everywhere.
it can be assigned so that it makes the clauses true. Clauses already true
can be ignored.

3. Unit clause heuristic
consider first unit clause with just one literal or all literal but one already
assigned. Generates cascade effect (forward chaining)
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Function DPLL(C , L,M):
Data: C set of clauses; L set of literals; M model;
Result: true or false
if every clause in C is true in M then return true;
if some clause in C is false in M then return false;
(l , val)←FindPureLiteral(L,C ,M);
if l is non-null then return DPLL(C , L \ l ,M ∪ {l = val});
l ←First(L); R ←Rest(L);
return DPLL(C ,R,M ∪ {l = true}) or

DPLL(C ,R,M ∪ {l = false})
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I Component analysis
I Variable value ordering
I Intelligent backtracking
I Random restarts
I Clever indexing (data structures)
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