DM841

Discrete Optimization

Lecture 3
Local Search and Metaheuristics
Overview

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Last Time

1. Combinatorial Optimization and Terminology
2. Solution Methods

3. SAT Example: enumeration, MIP, local search, backtracking

Solution Methods & Exampl

O Utl i ne Heuristic Methods

1. Solution Methods & Examples
Knapsack
Enumeration, Branch & Bound
Dynamic Programming
Vertex Coloring
Constraint Programming

2. Heuristic Methods
Local Search

Solution Methods & Exampl

O Utl i ne Heuristic Methods

1. Solution Methods & Examples

Solution Methods & Exampl

O Utl i n e Heuristic Methods

1. Solution Methods & Examples
Knapsack

Example: Knapsack problem

Knapsack problem
Given: a set of items /, each item / € | characterized by
> its weight w;
> its value v;
» and a capacity K for a knapsack
Task: find the subset of items in /
» does not exceed the capacity K of the knapsack

» that has maximum value

Solution Methods & Exampl
Heuristic Methods

I P M Odel Solution Methods & Exampl

Heuristic Methods

Let x; be a binary variable that denotes whether we include or not the item /

maX E Vi X

iel

s.t. Z wix; < K Vc € C,
iel

x; € {0,1}, Viel

Solution Methods & Exampl

O Utl i n e Heuristic Methods

1. Solution Methods & Examples

Enumeration, Branch & Bound

Solution Methods & Exampl

Enumeration o e

X1 [X2|X3

X1[X2|X3| [X1|X2|X3 X1[Xo|x3| [X1|x2|x3| |X1|x2|xz| |x1|xXo|x3| [X1[X2|xX3 X1 | X2 | xa

Solution Methods & Exampl
Branch and Bound ’

> |terative two steps

> branching
> bounding

» Branching

» split the problem into a number of subproblems
> like in exhaustive search

» Bounding

» find an optimistic estimate of the best solution to the subproblem
maximization: upper bound
minimization: lower bound

10

Branch and Bound

Optimistic estimate: Relaxing capacity constraint

Solution Methods & Exampl

Value
Room

Estimate

11

Branch and Bound

Optimistic estimation: Relaxing integrality

Solution Methods & Exampl

Heuristic Methods

Value
Room
Estimate

12

Solution Methods & Exampl

Outline Heuristic Methods

1. Solution Methods & Examples

Dynamic Programming

13

Solution Methods & Exampl

Dynamic Programming Heurietc Methods

Notation:
» assume that / =1,2,...,n

> O(k,J) denotes the optimal solution to the knapsack problem with
capacity k and items [1..j]
We are interested in finding out the best value O(K, n)

14

Solution Methods & Exampl

Recurrence relation Heriote Methots

» Assume that we know how to solve

O(k,j—1) for all k € 0..K

15

Solution Methods & Exampl

Recurrence relation Heuristic Methods

» Assume that we know how to solve
O(k,j—1) for all k € 0..K

> We want to solve O(k,j): We are just considering one more item, i.e.,
item ;.

15

Solution Methods & Exampl

Recurrence relation Heriote Methots

» Assume that we know how to solve
O(k,j—1) forall k € 0..K
> We want to solve O(k,j): We are just considering one more item, i.e.,

item ;.
> If w; < k, there are two cases

15

Solution Methods & Exampl

Recurrence relation Heunistic Metheds

» Assume that we know how to solve
O(k,j—1) for all k € 0..K

> We want to solve O(k,j): We are just considering one more item, i.e.,
item ;.
> If w; < k, there are two cases

» Either we do not select item j, then the best solution we can obtain is

15

Solution Methods & Exampl

Recurrence relation Heunistic Metheds

» Assume that we know how to solve
O(k,j—1) for all k € 0..K

> We want to solve O(k,j): We are just considering one more item, i.e.,
item ;.
> If w; < k, there are two cases
» Either we do not select item j, then the best solution we can obtain is
O(k,j—1)
> Or we select item j and the best solution is v; + O(k — wj,j — 1)

15

. Solution Methods & Exampl
Recurrence relation i Methods

Heuris tic Methods

» Assume that we know how to solve
O(k,j—1) forall k € 0..K

> We want to solve O(k,j): We are just considering one more item, i.e.,
item ;.
> If w; < k, there are two cases
» Either we do not select item j, then the best solution we can obtain is
O(k,j—1)

> Or we select item j and the best solution is v; + O(k — wj,j — 1)
> In summary

O(k,j) = {max{o(k,j —1),vj+ O(k—wj,j—1)} ifw; <k

O(k,j—1) otherwise

15

Solution Methods & Exampl

Recurrence relation Heurianic Methods

» Assume that we know how to solve
O(k,j—1) forall k € 0..K

> We want to solve O(k,j): We are just considering one more item, i.e.,
item ;.

> If w; < k, there are two cases
» Either we do not select item j, then the best solution we can obtain is
> Or we select item j and the best solution is v; + O(k — w;,j — 1)
> In summary
O(k.j) = max{O(k,j —1),vj + O(k —wj,j — 1)} ifw; <k
P10k, j - 1) otherwise
» Initial conditions:

O(k,0) =0 for all k

15

Solution Methods & Exampl

Heuristic Methods

Compute the recurrence relation bottom up

|int O(int k,int j) {

| if(j==0)

| return 0;

| else if (wj <= k)

‘ return max(O(k,j—1),vj + O(k—wj,j—1));
| else

| return O(k,j—1)

\

Q

}

How efficient is this approach?

16

Solution Methods & Exampl

Outline Heuristic Methods

1. Solution Methods & Examples

Vertex Coloring

17

Solution Methods & Exampl

The Vertex Coloring Problem Heuristic Methods

Given: A graph G and a set of colors I

A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

18

Solution Methods & Exampl

The Vertex Coloring Problem Heuristie Methods
Given: A graph G and a set of colors I

A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

18

Solution Methods & Exampl

The Vertex Coloring Problem Hearistic Methods

Given: A graph G and a set of colors I

A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)

Task: Find a proper coloring of G that uses at most
k colors.

Optimization version (chromatic number)

Task: Find a proper coloring of G that uses the
minimal number of colors.

18

Solution Methods & Exampl

The Vertex Coloring Problem Heuristic Methods

Given: A graph G and a set of colors I

A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)

Task: Find a proper coloring of G that uses at most
k colors.

Optimization version (chromatic number)

Task: Find a proper coloring of G that uses the
minimal number of colors.

Design an algorithm for solving general instances of the graph coloring
problem.

18

Exercise

Map coloring:

=
=y

Tasmania

-

b

d

Solution Methods & E

Heuristic Methods

19

Solution Methods & Exampl

O Utl i n e Heuristic Methods

1. Solution Methods & Examples

Constraint Programming

20

Solution Methods & Exampl

Constraint Programming Heurisie Wethods

The domain of a variable x, denoted D(x), is a finite set of elements that
can be assigned to x.

21

Solution Methods & Exampl

Constraint Programming Heurietc Methods

The domain of a variable x, denoted D(x), is a finite set of elements that
can be assigned to x.

A constraint C on X is a subset of the Cartesian product of the domains of

the variables in X, i.e., C C D(x1) x -+ x D(xx) (extensional form). A tuple
(di,...,dx) € Cis called a solution to C.

21

Solution Methods & Exampl

Constraint Programming

The domain of a variable x, denoted D(x), is a finite set of elements that
can be assigned to x.

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C C D(x1) x -+ x D(xx) (extensional form). A tuple
(di,...,dx) € Cis called a solution to C.

Equivalently, we say that a solution (d, ..., dx) € C is an assignment of the
value d; to the variable x;,V1 </ < k, and that this assignment satisfies C
(intentional form).

21

Solution Methods & Exampl

Constraint Programming

The domain of a variable x, denoted D(x), is a finite set of elements that
can be assigned to x.

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C C D(x1) x -+ x D(xx) (extensional form). A tuple
(di,...,dx) € Cis called a solution to C.

Equivalently, we say that a solution (d, ..., dx) € C is an assignment of the
value d; to the variable x;,V1 </ < k, and that this assignment satisfies C
(intentional form). If C = (), we say that it is inconsistent.

21

Solution Methods & Exampl

Constraint Programming Heurisie Wethods

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X, together with a finite set of constraints
C, each on a subset of X. A solution to a CSP is an assignment of a value
d € D(x) to each x € X, such that all constraints are satisfied simultaneously.

22

Solution Methods & Exampl

Constraint Programming Heurietc Methods

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X, together with a finite set of constraints
C, each on a subset of X. A solution to a CSP is an assignment of a value
d € D(x) to each x € X, such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)
A COP is a CSP P defined on the variables xq, .. ., Xp, together with an

objective function 7 : D(x;) X - -+ x D(x,) — Q that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the

value of f(d).

22

CP-model

CP formulation:

variables : domain(y;) = {1,...,K}
constraints : y; # y;
alldifferent({y; |i € C})

Solution Methods & Exampl
Heuristic Methods

VieV
Vij € E(G)
vC el

23

Solution Methods & Exampl

Propagation: An Example Hearistic Methods
nsummU
WA NT Q NSW 14 SA T
Initial domains | R G B|RGB|RG B|RGB|RGB|RGB|RGB
After WA=red |® GB|RGB/RGB|RGB| GB|RGB
After Q=green |® Bl ©® |[R B|RGEB BlrRG B
After V=bive |® Bl © |R RGB

Figure 5.6 The progress of a map-coloring search with forward checking. WA =red
is assigned first; then forward checking deletes red from the domains of the neighboring
variables NT and SA. After Q = green, green is deleted from the domains of NT', SA, and
NSW. After V = blue, blue is deleted from the domains of NSW and SA4, leaving SA with
no legal values.

24

Solution Methods & Exampl

Search

» Backtracking (complete)
» Branch and Bound (complete)

> Local search (incomplete)

25

Solution Methods & Exampl

O Utl i n e Heuristic Methods

2. Heuristic Methods

26

Solution Methods & Exampl

O Utl i n e Heuristic Methods

2. Heuristic Methods
Local Search

27

Local Sea rCh Heuristic Methods

Main idea for combinatorial optimization

» Sequential modification of a small number of decisions

> Incremental evaluation of solutions, generally in O(1) time

» Lazy propagation of constraints

» Usage of invariants

~> Small improvement probability but small time and space complexity
~ Millions of moves per minute

> (Meta)heuristic rules to drive the search

28

Metaheuristics

Variable Neighborhood Search and Large Scale Neighborhood Search
diversified neighborhoods + incremental algorithmics ("diversified" =
multiple, variable-size, and rich).

Tabu Search: Online learning of moves
Discard undoing moves,

Discard inefficient moves

Improve efficient moves selection

Simulated annealing
Allow degrading solutions

"“Restart” + parallel search
Avoid local optima
Improve search space coverage

Heuristic Methods

29

Local Search Modeling Heuristic Methods

Can be done within the same framework of Constraint Programming.
See Constraint Based Local-Search (Hentenryck and Michel) [B4].

» Decide the variables.
An assignment of these variables should identify a candidate solution
or a candidate solution must be retrievable efficiently
Must be linked to some Abstract Data Type (arrays, sets, permutations).

» Express the constraints on these variables

No restrictions are posed on the language in which the above two elements
are expressed.

30

LO Cal Sea rCh Heuristic Methods

Given a (combinatorial) optimization problem 1 and one of its instances 7:

> search space S(7)
specified by candidate solution representation:
discrete structures: sequences, permutations, graphs, partitions
(e.g., for SAT: array, sequence of all truth assignments
to propositional variables)

Note: solution set S'(7) C S(n)
(e.g., for SAT: models of given formula)

31

LO Cal Sea rCh Heuristic Methods

Given a (combinatorial) optimization problem 1 and one of its instances 7:

> search space S(7)
specified by candidate solution representation:
discrete structures: sequences, permutations, graphs, partitions
(e.g., for SAT: array, sequence of all truth assignments
to propositional variables)

Note: solution set S'(7) C S(n)
(e.g., for SAT: models of given formula)

» evaluation function f; : S(7) = R

7

(e.g., for SAT: number of false clauses)

31

Local Sea rCh Heuristic Methods

Given a (combinatorial) optimization problem 1 and one of its instances 7:

> search space S(7)
specified by candidate solution representation:
discrete structures: sequences, permutations, graphs, partitions
(e.g., for SAT: array, sequence of all truth assignments
to propositional variables)

Note: solution set S'(7) C S(n)
(e.g., for SAT: models of given formula)

» evaluation function f; : S(7) = R
(e.g., for SAT: number of false clauses)

» neighborhood function, A/, : S — 25(7)
(e.g., for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)

31

Loca I Sea rch Algorith m Solution Methodds & Exampls

Heuristic Methods
Further components [according to [HS]]

> set of memory states M ()
(may consist of a single state, for LS algorithms that
do not use memory)

32

Loca I Sea rch Algorith m Solution Methodds & Exampls

Heuristic Methods
Further components [according to [HS]]

> set of memory states M ()
(may consist of a single state, for LS algorithms that
do not use memory)

» initialization function init : () — S(7)
(can be seen as a probability distribution Pr(S(7) x M(7)) over initial
search positions and memory states)

32

Loca I Sea rch Algorith m Solution Methodj & Exampls

Heuristic Methods
Further components [according to [HS]]

> set of memory states M ()
(may consist of a single state, for LS algorithms that
do not use memory)

» initialization function init : () — S(7)
(can be seen as a probability distribution Pr(S(7) x M(7)) over initial
search positions and memory states)

> step function step : S(7) x M(7w) — S(7) x M(r)
(can be seen as a probability distribution Pr(S(7) x M(7)) over
subsequent, neighboring search positions and memory states)

32

Loca I Sea rch Algorith m Solution Methodj & Exampls

Heuristic Methods
Further components [according to [HS]]

> set of memory states M ()
(may consist of a single state, for LS algorithms that
do not use memory)

» initialization function init : () — S(7)
(can be seen as a probability distribution Pr(S(7) x M(7)) over initial
search positions and memory states)

> step function step : S(7) x M(7w) — S(7) x M(r)
(can be seen as a probability distribution Pr(S(7) x M(7)) over
subsequent, neighboring search positions and memory states)

> termination predicate terminate : S(7) x M(w) — {T, L}
(determines the termination state for each
search position and memory state)

32

Solution Methods & Exampl

Example: Local Search for SAT Heuristic Methods

Example: Uninformed random walk for SAT (1)

» search space S: set of all truth assignments to variables
in given formula F
(solution set S': set of all models of F)

34

Solution Methods & Exampl

Example: Local Search for SAT Heuristic Methods

Example: Uninformed random walk for SAT (1)

» search space S: set of all truth assignments to variables
in given formula F
(solution set S': set of all models of F)

» neighborhood relation N: I-flip neighborhood, i.e., assignments are
neighbors under A\ iff they differ in
the truth value of exactly one variable

> evaluation function not used, or f(s) = 0 if model f(s) = 1 otherwise

34

Solution Methods & Exampl

Example: Local Search for SAT Heuristic Methods

Example: Uninformed random walk for SAT (1)

» search space S: set of all truth assignments to variables
in given formula F
(solution set S': set of all models of F)

» neighborhood relation N: I-flip neighborhood, i.e., assignments are
neighbors under A\ iff they differ in
the truth value of exactly one variable

> evaluation function not used, or f(s) = 0 if model f(s) = 1 otherwise

> memory: not used, i.e., M = {0}

34

Solution Methods & Exampl
Heuristic Methods

Example: Uninformed random walk for SAT (2)

» initialization: uniform random choice from S, i.e.,
init(, {a’, m}) := 1/|S| for all assignments a’ and
memory states m

35

Solution Methods & Exampl
Heuristic Methods

Example: Uninformed random walk for SAT (2)

» initialization: uniform random choice from S, i.e.,
init(,{a’, m}) := 1/|S| for all assignments &’ and
memory states m

» step function: uniform random choice from current neighborhood, i.e.,
step({a, m}, {a', m}) = 1/|N(a)|
for all assignments a and memory states m,
where N(a) :={a’ € S| N(a,a')} is the set of
all neighbors of a.

35

Solution Methods & Exampl
Heuristic Methods

Example: Uninformed random walk for SAT (2)

» initialization: uniform random choice from S, i.e.,
init(,{a’, m}) := 1/|S| for all assignments &’ and
memory states m

» step function: uniform random choice from current neighborhood, i.e.,
step({a, m}, {a', m}) = 1/|N(a)|
for all assignments a and memory states m,
where N(a) :={a’ € S| N(a,a')} is the set of
all neighbors of a.

» termination: when model is found, i.e.,
terminate({a,m},{T}):=1if ais a model of F, and 0 otherwise.

35

Solution Methods & Exampl

N-Queens Problem Heuristic Methods

N-Queens problem
Input: A chessboard of size N x N

Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.

36

Local Search Modeling Selution Methods & Exampl
Random Walk

queensLS0a.co

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] — i));
m.close();

int it =0;
while (S.violations() > 0 && it < 50 x n) {
select(q in Size, v in Size) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v< <" viol: "<<S.violations() <<endl;

it =it + 1;
}
cout << queen << endl;

37

Local Search Modeling Selution Methods & Exampl
Another Random Walk

queensLS1.co

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] — i));
m.close();

int it =0;
while (S.violations() > 0 && it < 50 = n) {
select(q in Size : S.violations(queen[q])>0, v in Size) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v< <" viol: "< <S.violations()<<endl;

it =it + 1;
}
cout << queen << endl;

38

	Solution Methods & Examples
	Knapsack
	Enumeration, Branch & Bound
	Dynamic Programming
	Vertex Coloring
	Constraint Programming

	Heuristic Methods
	Local Search

