
DM841

Discrete Optimization

Lecture 3
Local Search and Metaheuristics

Overview

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Solution Methods & Examples
Heuristic MethodsLast Time

1. Combinatorial Optimization and Terminology

2. Solution Methods

3. SAT Example: enumeration, MIP, local search, backtracking

2

Solution Methods & Examples
Heuristic MethodsOutline

1. Solution Methods & Examples
Knapsack
Enumeration, Branch & Bound
Dynamic Programming
Vertex Coloring
Constraint Programming

2. Heuristic Methods
Local Search

3

Solution Methods & Examples
Heuristic MethodsOutline

1. Solution Methods & Examples
Knapsack
Enumeration, Branch & Bound
Dynamic Programming
Vertex Coloring
Constraint Programming

2. Heuristic Methods
Local Search

4

Solution Methods & Examples
Heuristic MethodsOutline

1. Solution Methods & Examples
Knapsack
Enumeration, Branch & Bound
Dynamic Programming
Vertex Coloring
Constraint Programming

2. Heuristic Methods
Local Search

5

Solution Methods & Examples
Heuristic MethodsExample: Knapsack problem

Knapsack problem

Given: a set of items I , each item i ∈ I characterized by
I its weight wi

I its value vi

I and a capacity K for a knapsack
Task: find the subset of items in I

I does not exceed the capacity K of the knapsack
I that has maximum value

6

Solution Methods & Examples
Heuristic MethodsIP Model

Let xi be a binary variable that denotes whether we include or not the item i

max
∑
i∈I

vixi

s.t.
∑
i∈I

wixi ≤ K ∀c ∈ C ,

xi ∈ {0, 1}, ∀i ∈ I

7

Solution Methods & Examples
Heuristic MethodsOutline

1. Solution Methods & Examples
Knapsack
Enumeration, Branch & Bound
Dynamic Programming
Vertex Coloring
Constraint Programming

2. Heuristic Methods
Local Search

8

Solution Methods & Examples
Heuristic MethodsEnumeration

9

Solution Methods & Examples
Heuristic MethodsBranch and Bound

I Iterative two steps

I branching
I bounding

I Branching

I split the problem into a number of subproblems
I like in exhaustive search

I Bounding

I find an optimistic estimate of the best solution to the subproblem
maximization: upper bound
minimization: lower bound

10

Solution Methods & Examples
Heuristic MethodsBranch and Bound

Optimistic estimate: Relaxing capacity constraint

11

Solution Methods & Examples
Heuristic MethodsBranch and Bound

Optimistic estimation: Relaxing integrality

12

Solution Methods & Examples
Heuristic MethodsOutline

1. Solution Methods & Examples
Knapsack
Enumeration, Branch & Bound
Dynamic Programming
Vertex Coloring
Constraint Programming

2. Heuristic Methods
Local Search

13

Solution Methods & Examples
Heuristic MethodsDynamic Programming

Notation:
I assume that I = 1, 2, ..., n
I O(k, j) denotes the optimal solution to the knapsack problem with

capacity k and items [1..j]
We are interested in finding out the best value O(K , n)

14

Solution Methods & Examples
Heuristic MethodsRecurrence relation

I Assume that we know how to solve

O(k, j − 1) for all k ∈ 0..K

I We want to solve O(k, j): We are just considering one more item, i.e.,
item j .

I If wj ≤ k , there are two cases

I Either we do not select item j , then the best solution we can obtain is
O(k, j − 1)

I Or we select item j and the best solution is vj + O(k − wj , j − 1)

I In summary

O(k, j) =

{
max{O(k, j − 1), vj + O(k − wj , j − 1)} ifwj ≤ k
O(k, j − 1) otherwise

I Initial conditions:

O(k, 0) = 0 for all k

15

Solution Methods & Examples
Heuristic MethodsRecurrence relation

I Assume that we know how to solve

O(k, j − 1) for all k ∈ 0..K

I We want to solve O(k, j): We are just considering one more item, i.e.,
item j .

I If wj ≤ k , there are two cases

I Either we do not select item j , then the best solution we can obtain is
O(k, j − 1)

I Or we select item j and the best solution is vj + O(k − wj , j − 1)

I In summary

O(k, j) =

{
max{O(k, j − 1), vj + O(k − wj , j − 1)} ifwj ≤ k
O(k, j − 1) otherwise

I Initial conditions:

O(k, 0) = 0 for all k

15

Solution Methods & Examples
Heuristic MethodsRecurrence relation

I Assume that we know how to solve

O(k, j − 1) for all k ∈ 0..K

I We want to solve O(k, j): We are just considering one more item, i.e.,
item j .

I If wj ≤ k , there are two cases

I Either we do not select item j , then the best solution we can obtain is
O(k, j − 1)

I Or we select item j and the best solution is vj + O(k − wj , j − 1)
I In summary

O(k, j) =

{
max{O(k, j − 1), vj + O(k − wj , j − 1)} ifwj ≤ k
O(k, j − 1) otherwise

I Initial conditions:

O(k, 0) = 0 for all k

15

Solution Methods & Examples
Heuristic MethodsRecurrence relation

I Assume that we know how to solve

O(k, j − 1) for all k ∈ 0..K

I We want to solve O(k, j): We are just considering one more item, i.e.,
item j .

I If wj ≤ k , there are two cases
I Either we do not select item j , then the best solution we can obtain is

O(k, j − 1)

I Or we select item j and the best solution is vj + O(k − wj , j − 1)
I In summary

O(k, j) =

{
max{O(k, j − 1), vj + O(k − wj , j − 1)} ifwj ≤ k
O(k, j − 1) otherwise

I Initial conditions:

O(k, 0) = 0 for all k

15

Solution Methods & Examples
Heuristic MethodsRecurrence relation

I Assume that we know how to solve

O(k, j − 1) for all k ∈ 0..K

I We want to solve O(k, j): We are just considering one more item, i.e.,
item j .

I If wj ≤ k , there are two cases
I Either we do not select item j , then the best solution we can obtain is

O(k, j − 1)
I Or we select item j and the best solution is vj + O(k − wj , j − 1)

I In summary

O(k, j) =

{
max{O(k, j − 1), vj + O(k − wj , j − 1)} ifwj ≤ k
O(k, j − 1) otherwise

I Initial conditions:

O(k, 0) = 0 for all k

15

Solution Methods & Examples
Heuristic MethodsRecurrence relation

I Assume that we know how to solve

O(k, j − 1) for all k ∈ 0..K

I We want to solve O(k, j): We are just considering one more item, i.e.,
item j .

I If wj ≤ k , there are two cases
I Either we do not select item j , then the best solution we can obtain is

O(k, j − 1)
I Or we select item j and the best solution is vj + O(k − wj , j − 1)

I In summary

O(k, j) =

{
max{O(k, j − 1), vj + O(k − wj , j − 1)} ifwj ≤ k
O(k, j − 1) otherwise

I Initial conditions:

O(k, 0) = 0 for all k

15

Solution Methods & Examples
Heuristic MethodsRecurrence relation

I Assume that we know how to solve

O(k, j − 1) for all k ∈ 0..K

I We want to solve O(k, j): We are just considering one more item, i.e.,
item j .

I If wj ≤ k , there are two cases
I Either we do not select item j , then the best solution we can obtain is

O(k, j − 1)
I Or we select item j and the best solution is vj + O(k − wj , j − 1)

I In summary

O(k, j) =

{
max{O(k, j − 1), vj + O(k − wj , j − 1)} ifwj ≤ k
O(k, j − 1) otherwise

I Initial conditions:

O(k, 0) = 0 for all k

15

Solution Methods & Examples
Heuristic Methods

Compute the recurrence relation bottom up� �
int O(int k,int j) {

if (j == 0)
return 0;

else if (wj <= k)
return max(O(k,j−1),vj + O(k−wj,j−1));

else
return O(k,j−1)

}� �
How efficient is this approach?

16

Solution Methods & Examples
Heuristic MethodsOutline

1. Solution Methods & Examples
Knapsack
Enumeration, Branch & Bound
Dynamic Programming
Vertex Coloring
Constraint Programming

2. Heuristic Methods
Local Search

17

Solution Methods & Examples
Heuristic MethodsThe Vertex Coloring Problem

Given: A graph G and a set of colors Γ.
A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)
Task: Find a proper coloring of G that uses at most
k colors.
Optimization version (chromatic number)
Task: Find a proper coloring of G that uses the
minimal number of colors.

Design an algorithm for solving general instances of the graph coloring
problem.

18

Solution Methods & Examples
Heuristic MethodsThe Vertex Coloring Problem

Given: A graph G and a set of colors Γ.
A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)
Task: Find a proper coloring of G that uses at most
k colors.
Optimization version (chromatic number)
Task: Find a proper coloring of G that uses the
minimal number of colors.

Design an algorithm for solving general instances of the graph coloring
problem.

18

Solution Methods & Examples
Heuristic MethodsThe Vertex Coloring Problem

Given: A graph G and a set of colors Γ.
A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)
Task: Find a proper coloring of G that uses at most
k colors.
Optimization version (chromatic number)
Task: Find a proper coloring of G that uses the
minimal number of colors.

Design an algorithm for solving general instances of the graph coloring
problem.

18

Solution Methods & Examples
Heuristic MethodsThe Vertex Coloring Problem

Given: A graph G and a set of colors Γ.
A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)
Task: Find a proper coloring of G that uses at most
k colors.
Optimization version (chromatic number)
Task: Find a proper coloring of G that uses the
minimal number of colors.

Design an algorithm for solving general instances of the graph coloring
problem.

18

Solution Methods & Examples
Heuristic MethodsExercise

Map coloring:

19

Solution Methods & Examples
Heuristic MethodsOutline

1. Solution Methods & Examples
Knapsack
Enumeration, Branch & Bound
Dynamic Programming
Vertex Coloring
Constraint Programming

2. Heuristic Methods
Local Search

20

Solution Methods & Examples
Heuristic MethodsConstraint Programming

The domain of a variable x , denoted D(x), is a finite set of elements that
can be assigned to x .

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C ⊆ D(x1)× · · · × D(xk) (extensional form). A tuple
(d1, . . . , dk) ∈ C is called a solution to C .
Equivalently, we say that a solution (d1, ..., dk) ∈ C is an assignment of the
value di to the variable xi ,∀1 ≤ i ≤ k, and that this assignment satisfies C
(intentional form). If C = ∅, we say that it is inconsistent.

21

Solution Methods & Examples
Heuristic MethodsConstraint Programming

The domain of a variable x , denoted D(x), is a finite set of elements that
can be assigned to x .

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C ⊆ D(x1)× · · · × D(xk) (extensional form). A tuple
(d1, . . . , dk) ∈ C is called a solution to C .

Equivalently, we say that a solution (d1, ..., dk) ∈ C is an assignment of the
value di to the variable xi ,∀1 ≤ i ≤ k, and that this assignment satisfies C
(intentional form). If C = ∅, we say that it is inconsistent.

21

Solution Methods & Examples
Heuristic MethodsConstraint Programming

The domain of a variable x , denoted D(x), is a finite set of elements that
can be assigned to x .

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C ⊆ D(x1)× · · · × D(xk) (extensional form). A tuple
(d1, . . . , dk) ∈ C is called a solution to C .
Equivalently, we say that a solution (d1, ..., dk) ∈ C is an assignment of the
value di to the variable xi ,∀1 ≤ i ≤ k, and that this assignment satisfies C
(intentional form).

If C = ∅, we say that it is inconsistent.

21

Solution Methods & Examples
Heuristic MethodsConstraint Programming

The domain of a variable x , denoted D(x), is a finite set of elements that
can be assigned to x .

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C ⊆ D(x1)× · · · × D(xk) (extensional form). A tuple
(d1, . . . , dk) ∈ C is called a solution to C .
Equivalently, we say that a solution (d1, ..., dk) ∈ C is an assignment of the
value di to the variable xi ,∀1 ≤ i ≤ k, and that this assignment satisfies C
(intentional form). If C = ∅, we say that it is inconsistent.

21

Solution Methods & Examples
Heuristic MethodsConstraint Programming

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X , together with a finite set of constraints
C , each on a subset of X . A solution to a CSP is an assignment of a value
d ∈ D(x) to each x ∈ X , such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables x1, . . . , xn, together with an
objective function f : D(x1)× · · · × D(xn)→ Q that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the
value of f (d).

22

Solution Methods & Examples
Heuristic MethodsConstraint Programming

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X , together with a finite set of constraints
C , each on a subset of X . A solution to a CSP is an assignment of a value
d ∈ D(x) to each x ∈ X , such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables x1, . . . , xn, together with an
objective function f : D(x1)× · · · × D(xn)→ Q that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the
value of f (d).

22

Solution Methods & Examples
Heuristic MethodsCP-model

CP formulation:

variables : domain(yi) = {1, . . . ,K} ∀i ∈ V

constraints : yi 6= yj ∀ij ∈ E(G)

alldifferent({yi | i ∈ C}) ∀C ∈ C

23

Solution Methods & Examples
Heuristic MethodsPropagation: An Example

24

Solution Methods & Examples
Heuristic MethodsSearch

I Backtracking (complete)

I Branch and Bound (complete)

I Local search (incomplete)

25

Solution Methods & Examples
Heuristic MethodsOutline

1. Solution Methods & Examples
Knapsack
Enumeration, Branch & Bound
Dynamic Programming
Vertex Coloring
Constraint Programming

2. Heuristic Methods
Local Search

26

Solution Methods & Examples
Heuristic MethodsOutline

1. Solution Methods & Examples
Knapsack
Enumeration, Branch & Bound
Dynamic Programming
Vertex Coloring
Constraint Programming

2. Heuristic Methods
Local Search

27

Solution Methods & Examples
Heuristic MethodsLocal Search

Main idea for combinatorial optimization

I Sequential modification of a small number of decisions

I Incremental evaluation of solutions, generally in O(1) time

I Lazy propagation of constraints

I Usage of invariants

 Small improvement probability but small time and space complexity
 Millions of moves per minute

I (Meta)heuristic rules to drive the search

28

Solution Methods & Examples
Heuristic MethodsMetaheuristics

I Variable Neighborhood Search and Large Scale Neighborhood Search
diversified neighborhoods + incremental algorithmics ("diversified" ≡
multiple, variable-size, and rich).

I Tabu Search: Online learning of moves
Discard undoing moves,
Discard inefficient moves
Improve efficient moves selection

I Simulated annealing
Allow degrading solutions

I “Restart” + parallel search
Avoid local optima
Improve search space coverage

29

Solution Methods & Examples
Heuristic MethodsLocal Search Modeling

Can be done within the same framework of Constraint Programming.
See Constraint Based Local-Search (Hentenryck and Michel) [B4].

I Decide the variables.
An assignment of these variables should identify a candidate solution
or a candidate solution must be retrievable efficiently
Must be linked to some Abstract Data Type (arrays, sets, permutations).

I Express the constraints on these variables

No restrictions are posed on the language in which the above two elements
are expressed.

30

Solution Methods & Examples
Heuristic MethodsLocal Search

Given a (combinatorial) optimization problem Π and one of its instances π:

I search space S(π)
specified by candidate solution representation:
discrete structures: sequences, permutations, graphs, partitions
(e.g., for SAT: array, sequence of all truth assignments
to propositional variables)

Note: solution set S ′(π) ⊆ S(π)
(e.g., for SAT: models of given formula)

I evaluation function fπ : S(π)→ R
(e.g., for SAT: number of false clauses)

I neighborhood function, Nπ : S → 2S(π)

(e.g., for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)

31

Solution Methods & Examples
Heuristic MethodsLocal Search

Given a (combinatorial) optimization problem Π and one of its instances π:

I search space S(π)
specified by candidate solution representation:
discrete structures: sequences, permutations, graphs, partitions
(e.g., for SAT: array, sequence of all truth assignments
to propositional variables)

Note: solution set S ′(π) ⊆ S(π)
(e.g., for SAT: models of given formula)

I evaluation function fπ : S(π)→ R
(e.g., for SAT: number of false clauses)

I neighborhood function, Nπ : S → 2S(π)

(e.g., for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)

31

Solution Methods & Examples
Heuristic MethodsLocal Search

Given a (combinatorial) optimization problem Π and one of its instances π:

I search space S(π)
specified by candidate solution representation:
discrete structures: sequences, permutations, graphs, partitions
(e.g., for SAT: array, sequence of all truth assignments
to propositional variables)

Note: solution set S ′(π) ⊆ S(π)
(e.g., for SAT: models of given formula)

I evaluation function fπ : S(π)→ R
(e.g., for SAT: number of false clauses)

I neighborhood function, Nπ : S → 2S(π)

(e.g., for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)

31

Solution Methods & Examples
Heuristic MethodsLocal Search Algorithm

Further components [according to [HS]]

I set of memory states M(π)
(may consist of a single state, for LS algorithms that
do not use memory)

I initialization function init : ∅ → S(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over initial
search positions and memory states)

I step function step : S(π)×M(π)→ S(π)×M(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over
subsequent, neighboring search positions and memory states)

I termination predicate terminate : S(π)×M(π)→ {>,⊥}
(determines the termination state for each
search position and memory state)

32

Solution Methods & Examples
Heuristic MethodsLocal Search Algorithm

Further components [according to [HS]]

I set of memory states M(π)
(may consist of a single state, for LS algorithms that
do not use memory)

I initialization function init : ∅ → S(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over initial
search positions and memory states)

I step function step : S(π)×M(π)→ S(π)×M(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over
subsequent, neighboring search positions and memory states)

I termination predicate terminate : S(π)×M(π)→ {>,⊥}
(determines the termination state for each
search position and memory state)

32

Solution Methods & Examples
Heuristic MethodsLocal Search Algorithm

Further components [according to [HS]]

I set of memory states M(π)
(may consist of a single state, for LS algorithms that
do not use memory)

I initialization function init : ∅ → S(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over initial
search positions and memory states)

I step function step : S(π)×M(π)→ S(π)×M(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over
subsequent, neighboring search positions and memory states)

I termination predicate terminate : S(π)×M(π)→ {>,⊥}
(determines the termination state for each
search position and memory state)

32

Solution Methods & Examples
Heuristic MethodsLocal Search Algorithm

Further components [according to [HS]]

I set of memory states M(π)
(may consist of a single state, for LS algorithms that
do not use memory)

I initialization function init : ∅ → S(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over initial
search positions and memory states)

I step function step : S(π)×M(π)→ S(π)×M(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over
subsequent, neighboring search positions and memory states)

I termination predicate terminate : S(π)×M(π)→ {>,⊥}
(determines the termination state for each
search position and memory state)

32

Solution Methods & Examples
Heuristic MethodsExample: Local Search for SAT

Example: Uninformed random walk for SAT (1)

I search space S : set of all truth assignments to variables
in given formula F
(solution set S ′: set of all models of F)

I neighborhood relation N : 1-flip neighborhood, i.e., assignments are
neighbors under N iff they differ in
the truth value of exactly one variable

I evaluation function not used, or f (s) = 0 if model f (s) = 1 otherwise

I memory: not used, i.e., M := {0}

34

Solution Methods & Examples
Heuristic MethodsExample: Local Search for SAT

Example: Uninformed random walk for SAT (1)

I search space S : set of all truth assignments to variables
in given formula F
(solution set S ′: set of all models of F)

I neighborhood relation N : 1-flip neighborhood, i.e., assignments are
neighbors under N iff they differ in
the truth value of exactly one variable

I evaluation function not used, or f (s) = 0 if model f (s) = 1 otherwise

I memory: not used, i.e., M := {0}

34

Solution Methods & Examples
Heuristic MethodsExample: Local Search for SAT

Example: Uninformed random walk for SAT (1)

I search space S : set of all truth assignments to variables
in given formula F
(solution set S ′: set of all models of F)

I neighborhood relation N : 1-flip neighborhood, i.e., assignments are
neighbors under N iff they differ in
the truth value of exactly one variable

I evaluation function not used, or f (s) = 0 if model f (s) = 1 otherwise

I memory: not used, i.e., M := {0}

34

Solution Methods & Examples
Heuristic Methods

Example: Uninformed random walk for SAT (2)

I initialization: uniform random choice from S , i.e.,
init(, {a′,m}) := 1/|S | for all assignments a′ and
memory states m

I step function: uniform random choice from current neighborhood, i.e.,
step({a,m}, {a′,m}) := 1/|N(a)|
for all assignments a and memory states m,
where N(a) := {a′ ∈ S | N (a, a′)} is the set of
all neighbors of a.

I termination: when model is found, i.e.,
terminate({a,m}, {>}) := 1 if a is a model of F , and 0 otherwise.

35

Solution Methods & Examples
Heuristic Methods

Example: Uninformed random walk for SAT (2)

I initialization: uniform random choice from S , i.e.,
init(, {a′,m}) := 1/|S | for all assignments a′ and
memory states m

I step function: uniform random choice from current neighborhood, i.e.,
step({a,m}, {a′,m}) := 1/|N(a)|
for all assignments a and memory states m,
where N(a) := {a′ ∈ S | N (a, a′)} is the set of
all neighbors of a.

I termination: when model is found, i.e.,
terminate({a,m}, {>}) := 1 if a is a model of F , and 0 otherwise.

35

Solution Methods & Examples
Heuristic Methods

Example: Uninformed random walk for SAT (2)

I initialization: uniform random choice from S , i.e.,
init(, {a′,m}) := 1/|S | for all assignments a′ and
memory states m

I step function: uniform random choice from current neighborhood, i.e.,
step({a,m}, {a′,m}) := 1/|N(a)|
for all assignments a and memory states m,
where N(a) := {a′ ∈ S | N (a, a′)} is the set of
all neighbors of a.

I termination: when model is found, i.e.,
terminate({a,m}, {>}) := 1 if a is a model of F , and 0 otherwise.

35

Solution Methods & Examples
Heuristic MethodsN-Queens Problem

N-Queens problem

Input: A chessboard of size N × N

Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.

36

Solution Methods & Examples
Heuristic MethodsLocal Search Modeling

Random Walk

queensLS0a.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size, v in Size) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations() <<endl;

}
it = it + 1;

}
cout << queen << endl;� �

37

Solution Methods & Examples
Heuristic MethodsLocal Search Modeling

Another Random Walk

queensLS1.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size : S.violations(queen[q])>0, v in Size) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations()<<endl;

}
it = it + 1;

}
cout << queen << endl;� �

38

	Solution Methods & Examples
	Knapsack
	Enumeration, Branch & Bound
	Dynamic Programming
	Vertex Coloring
	Constraint Programming

	Heuristic Methods
	Local Search

