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Local SearchReview

1. Combinatorial Optimization and Terminology

2. Solution Methods

3. SAT Example: enumeration, MIP, local search, backtracking

4. Local Search: Modelling and components

5. N-Queens example

6. C++: object passing, Encapsulation, Constructors, Inheritance,
Templates, STL, virtual functions, headers, namespaces, copy
constructors, destructors

7. EasyLocal framework. Examples
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Local SearchStandard Template Library

I Static arrays array<type>
I Dynamic arrays vector<type>
I lists (no random access) list<type>
I sets (no repetition of elements allowed) set<type> (implemented as

red-black trees)
I maps map<keyttype, type> associative containers that contain

key-value pairs with unique keys. Keys are sorted. (similar to dictionaries
in python) (implemented as red-black trees)

I unordered versions of sets and maps
I They require to include the std library:� �

#include<cstdlib>
#include<vector>
#include<list>
#include<map>
#include<set>
#include<algorithm>
#include<stdexcept>
using namespace std;� �
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Local SearchIterators

I iterators are pointers to elements of STL containers� �
vector<int> A = {1,2,3,4};
vector<int>::iterator pt; // or vector<int>::const_iterator
for (pt=A.begin(); pt!=A.end(); pt++)
cout<<∗pt;� �

I Type inference:� �
vector<int> A = {1,2,3,4};
vector<int>::iterator pt1 = A.begin();
aut pt2 = A.begin();� �

I for syntax:� �
for (auto &x : my_array) {

x ∗= 2;
}� �
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Local SearchOutline

1. Local Search
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Local SearchLocal search — global view

c

s

I vertices: candidate solutions
(search positions)

I vertex labels: evaluation function

I edges: connect “neighboring”
positions

I s: (optimal) solution

I c: current search position
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Local SearchSummary: Local Search Algorithms
(as in [Hoos, Stützle, 2005])

For given problem instance π:

1. search space Sπ

2. evaluation function fπ : S → R

3. neighborhood relation Nπ ⊆ Sπ × Sπ

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}
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Local SearchIterative Improvement

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s ′ of s such that f (s ′) < f (s)
s := s ′

I If more than one neighbor have better cost then need to choose one
(heuristic pivot rule)

I The procedure ends in a local optimum ŝ:
Def.: Local optimum ŝ w.r.t. N if f (ŝ) ≤ f (s) ∀s ∈ N(ŝ)

I Issue: how to avoid getting trapped in bad local optima?
I use more complex neighborhood functions
I restart
I allow non-improving moves
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Local SearchDecision vs Minimization

LS-Decision(π)
input: problem instance π ∈ Π
output: solution s ∈ S ′(π) or ∅
(s,m) := init(π)

while not terminate(π, s, m) do
(s,m) := step(π, s, m)

if s ∈ S ′(π) then
return s

else
return ∅

LS-Minimization(π′)
input: problem instance π′ ∈ Π′

output: solution s ∈ S ′(π′) or ∅
(s,m) := init(π′);
sb := s;
while not terminate(π′, s, m) do

(s,m) := step(π′, s, m);
if f (π′, s) < f (π′, ŝ) then

sb := s;

if sb ∈ S ′(π′) then
return sb

else
return ∅
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Local SearchExamples

Iterative Improvement for SAT

I search space S : set of all truth assignments to variables in given formula F
(solution set S ′: set of all models of F )

I neighborhood relation N : 1-flip neighborhood
I memory: not used, i.e., M := {0}
I initialization: uniform random choice from S , i.e., init(∅, {a}) := 1/|S | for all

assignments a
I evaluation function: f (a) := number of clauses in F

that are unsatisfied under assignment a
(Note: f (a) = 0 iff a is a model of F .)

I step function: uniform random choice from improving neighbors, i.e.,
step(a, a′) := 1/|I (a)| if a′ ∈ I (a),
and 0 otherwise, where I (a) := {a′ | N (a, a′) ∧ f (a′) < f (a)}

I termination: when no improving neighbor is available
i.e., terminate(a,>) := 1 if I (a) = ∅, and 0 otherwise.
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Local SearchExamples

Random order first improvement for SAT
URW-for-SAT(F ,maxSteps)
input: propositional formula F , integer maxSteps
output: a model for F or ∅
choose assignment ϕ of truth values to all variables in F

uniformly at random;
steps := 0;
while ¬(ϕ satisfies F ) and (steps < maxSteps) do

select x uniformly at random from {x ′|x ′ is a variable in F and
changing value of x ′ in ϕ decreases the number of unsatisfied clauses}
steps := steps+1;

if ϕ satisfies F then
return ϕ

else
return ∅
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Local SearchLocal Search Modelling
Iterative Improvement

queensLS00.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size, v in Size : S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations() <<endl;

}
it = it + 1;

}
cout << queen << endl;� �
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Local SearchLocal Search Modelling
Best Improvement

queensLS0.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

selectMin(q in Size,v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations() <<

endl;
}
it = it + 1;

}
cout << queen << endl;� �
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Local SearchLocal Search Modelling
First Improvement

queensLS2.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

selectFirst(q in Size, v in Size: S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations() <<

endl;
}
it = it + 1;

}
cout << queen << endl;� �

14



Local SearchLocal Search Modelling
Min Conflict Heuristic

queensLS0b.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size : S.violations(queen[q])>0) {
selectMin(v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations() <<

endl;
}
it = it + 1;

}
}
cout << queen << endl;� �
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Local SearchEasyLocal: Runners

I Runner classes are the algorithmic core of the framework.

I They are responsible for performing a run of a local search technique,
starting from an initial state and leading to a final one.

I Runner has only Input and State templates, and is connected to the
solvers

I MoveRunner has also Move, and the pointers to the necessary helpers. It
also stores the basic data common to all derived classes: the current
state, the best state, the current move, and the number of iterations.
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Local Search
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Local SearchRunners::Go

Runners.hh
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Local SearchHill Climbing in EasyLocal
A move is accepted if it is non worsening (i.e., it improves the cost or leaves
it unchanged).
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Local Search

I The FirstDescent (aka First Improvement) runner performs a simple
local search. At each step of the search, the first improving move in the
neighborhood of current solution is selected and performed.

I The SteepestDescent (aka Best Improvement) runner performs a
simple local search. At each step of the search, the best move in the
neighborhood of current solution is selected and performed.

I The HillClimbing runner considers random move selection. A move is
then performed only if it does improve or it leaves unchanged the value
of the cost function.

I The LateAcceptanceHillClimbing maintains a list of previous moves
and defers acceptance to k steps further.
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Local SearchInterruptible

An inheritable class to add timeouts (in milliseconds) to anything.

MakeFunction produces a function object to be launched in a separate
thread by SyncRun, AsyncRun or Tester
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Local SearchParametrized

An inheritable class representing a parametrized component.

In constructors, eg, AbstractLocalSearch
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Local SearchObservers

Infrastructure for printing debugging information on the runner
The command line parameter decides how much verbose the output must be:

I --main::observer 1 for all runners with the observer attached, it
writes some info on the costs everytime the runner finds a new best
state.

I --main::observer 2 it writes also all times that the runners makes a
worsening move

I --main::observer 3, it write all moves executed by the runner.
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Local SearchEasyLocal: Solvers

Solver classes control the search by generating the initial solutions, and
deciding how, and in which sequence, Runners and Kickers have to be
activated
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Local SearchSolve
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