
DM841

Discrete Optimization

Lecture 6
Iterative Improvement

Runners

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Local SearchReview

1. Combinatorial Optimization and Terminology

2. Solution Methods

3. SAT Example: enumeration, MIP, local search, backtracking

4. Local Search: Modelling and components

5. N-Queens example

6. C++: object passing, Encapsulation, Constructors, Inheritance,
Templates, STL, virtual functions, headers, namespaces, copy
constructors, destructors

7. EasyLocal framework. Examples

2

Local SearchStandard Template Library

I Static arrays array<type>
I Dynamic arrays vector<type>
I lists (no random access) list<type>
I sets (no repetition of elements allowed) set<type> (implemented as

red-black trees)
I maps map<keyttype, type> associative containers that contain

key-value pairs with unique keys. Keys are sorted. (similar to dictionaries
in python) (implemented as red-black trees)

I unordered versions of sets and maps
I They require to include the std library:� �

#include<cstdlib>
#include<vector>
#include<list>
#include<map>
#include<set>
#include<algorithm>
#include<stdexcept>
using namespace std;� �

3

Local SearchIterators

I iterators are pointers to elements of STL containers� �
vector<int> A = {1,2,3,4};
vector<int>::iterator pt; // or vector<int>::const_iterator
for (pt=A.begin(); pt!=A.end(); pt++)
cout<<∗pt;� �

I Type inference:� �
vector<int> A = {1,2,3,4};
vector<int>::iterator pt1 = A.begin();
aut pt2 = A.begin();� �

I for syntax:� �
for (auto &x : my_array) {

x ∗= 2;
}� �

4

Local SearchOutline

1. Local Search

5

Local SearchLocal search — global view

c

s

I vertices: candidate solutions
(search positions)

I vertex labels: evaluation function

I edges: connect “neighboring”
positions

I s: (optimal) solution

I c: current search position

6

Local SearchSummary: Local Search Algorithms
(as in [Hoos, Stützle, 2005])

For given problem instance π:

1. search space Sπ

2. evaluation function fπ : S → R

3. neighborhood relation Nπ ⊆ Sπ × Sπ

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}

7

Local SearchIterative Improvement

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s ′ of s such that f (s ′) < f (s)
s := s ′

I If more than one neighbor have better cost then need to choose one
(heuristic pivot rule)

I The procedure ends in a local optimum ŝ:
Def.: Local optimum ŝ w.r.t. N if f (ŝ) ≤ f (s) ∀s ∈ N(ŝ)

I Issue: how to avoid getting trapped in bad local optima?
I use more complex neighborhood functions
I restart
I allow non-improving moves

8

Local SearchDecision vs Minimization

LS-Decision(π)
input: problem instance π ∈ Π
output: solution s ∈ S ′(π) or ∅
(s,m) := init(π)

while not terminate(π, s, m) do
(s,m) := step(π, s, m)

if s ∈ S ′(π) then
return s

else
return ∅

LS-Minimization(π′)
input: problem instance π′ ∈ Π′

output: solution s ∈ S ′(π′) or ∅
(s,m) := init(π′);
sb := s;
while not terminate(π′, s, m) do

(s,m) := step(π′, s, m);
if f (π′, s) < f (π′, ŝ) then

sb := s;

if sb ∈ S ′(π′) then
return sb

else
return ∅

9

Local SearchExamples

Iterative Improvement for SAT

I search space S : set of all truth assignments to variables in given formula F
(solution set S ′: set of all models of F)

I neighborhood relation N : 1-flip neighborhood
I memory: not used, i.e., M := {0}
I initialization: uniform random choice from S , i.e., init(∅, {a}) := 1/|S | for all

assignments a
I evaluation function: f (a) := number of clauses in F

that are unsatisfied under assignment a
(Note: f (a) = 0 iff a is a model of F .)

I step function: uniform random choice from improving neighbors, i.e.,
step(a, a′) := 1/|I (a)| if a′ ∈ I (a),
and 0 otherwise, where I (a) := {a′ | N (a, a′) ∧ f (a′) < f (a)}

I termination: when no improving neighbor is available
i.e., terminate(a,>) := 1 if I (a) = ∅, and 0 otherwise.

10

Local SearchExamples

Random order first improvement for SAT
URW-for-SAT(F ,maxSteps)
input: propositional formula F , integer maxSteps
output: a model for F or ∅
choose assignment ϕ of truth values to all variables in F

uniformly at random;
steps := 0;
while ¬(ϕ satisfies F) and (steps < maxSteps) do

select x uniformly at random from {x ′|x ′ is a variable in F and
changing value of x ′ in ϕ decreases the number of unsatisfied clauses}
steps := steps+1;

if ϕ satisfies F then
return ϕ

else
return ∅

11

Local SearchLocal Search Modelling
Iterative Improvement

queensLS00.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size, v in Size : S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations() <<endl;

}
it = it + 1;

}
cout << queen << endl;� �

12

Local SearchLocal Search Modelling
Best Improvement

queensLS0.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

selectMin(q in Size,v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations() <<

endl;
}
it = it + 1;

}
cout << queen << endl;� �

13

Local SearchLocal Search Modelling
First Improvement

queensLS2.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

selectFirst(q in Size, v in Size: S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations() <<

endl;
}
it = it + 1;

}
cout << queen << endl;� �

14

Local SearchLocal Search Modelling
Min Conflict Heuristic

queensLS0b.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size : S.violations(queen[q])>0) {
selectMin(v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations() <<

endl;
}
it = it + 1;

}
}
cout << queen << endl;� �

15

Local SearchEasyLocal: Runners

I Runner classes are the algorithmic core of the framework.

I They are responsible for performing a run of a local search technique,
starting from an initial state and leading to a final one.

I Runner has only Input and State templates, and is connected to the
solvers

I MoveRunner has also Move, and the pointers to the necessary helpers. It
also stores the basic data common to all derived classes: the current
state, the best state, the current move, and the number of iterations.

17

Local Search

18

Local SearchRunners::Go

Runners.hh

19

Local SearchHill Climbing in EasyLocal
A move is accepted if it is non worsening (i.e., it improves the cost or leaves
it unchanged).

20

Local Search

I The FirstDescent (aka First Improvement) runner performs a simple
local search. At each step of the search, the first improving move in the
neighborhood of current solution is selected and performed.

I The SteepestDescent (aka Best Improvement) runner performs a
simple local search. At each step of the search, the best move in the
neighborhood of current solution is selected and performed.

I The HillClimbing runner considers random move selection. A move is
then performed only if it does improve or it leaves unchanged the value
of the cost function.

I The LateAcceptanceHillClimbing maintains a list of previous moves
and defers acceptance to k steps further.

21

Local SearchInterruptible

An inheritable class to add timeouts (in milliseconds) to anything.

MakeFunction produces a function object to be launched in a separate
thread by SyncRun, AsyncRun or Tester

22

Local SearchParametrized

An inheritable class representing a parametrized component.

In constructors, eg, AbstractLocalSearch

23

Local SearchObservers

Infrastructure for printing debugging information on the runner
The command line parameter decides how much verbose the output must be:

I --main::observer 1 for all runners with the observer attached, it
writes some info on the costs everytime the runner finds a new best
state.

I --main::observer 2 it writes also all times that the runners makes a
worsening move

I --main::observer 3, it write all moves executed by the runner.

24

Local SearchEasyLocal: Solvers

Solver classes control the search by generating the initial solutions, and
deciding how, and in which sequence, Runners and Kickers have to be
activated

25

Local SearchSolve

26

	Local Search

