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MetaheuristicsReview

1. Combinatorial Optimization and Terminology, TSP

2. Solution Methods

3. SAT Example: enumeration, MIP, local search, backtracking

4. Local Search: Modelling and components

5. N-Queens example

6. C++: object passing, Encapsulation, Constructors, Inheritance,
Templates, STL, virtual functions, headers, namespaces, copy
constructors, destructors

7. EasyLocal framework. Examples

8. Local Search: Iterative Improvement, SAT
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MetaheuristicsThe Vertex Coloring Problem

Given: A graph G and a set of colors Γ.
A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)
Task: Find a proper coloring of G that uses at most
k colors.
Optimization version (chromatic number)
Task: Find a proper coloring of G that uses the
minimal number of colors.

3



MetaheuristicsExercise

Map coloring:
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MetaheuristicsTimetabling as a graph coloring problem

Definition
Find an assignment of lectures to time slots and rooms which is

Feasible

rooms are only used by one lecture at a time,
each lecture is assigned to a suitable room,
no student has to attend more than one lecture at once,
lectures are assigned only time slots where they are available;


Hard
Constraints

and Good

no more than two lectures in a row for a student,
unpopular time slots avoided (last in a day),
students do not have one single lecture in a day.

 Soft
Constraints
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Metaheuristics

A look at the instances

These are large scale instances.
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Metaheuristics

A look at the basic Graph Model (vertices correspond to lectures)
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MetaheuristicsConstraint Satisfaction Problem

The domain of a variable x , denoted D(x), is a finite set of elements that
can be assigned to x .

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C ⊆ D(x1)× · · · × D(xk) (extensional form). A tuple
(d1, . . . , dk) ∈ C is called a solution to C .
Equivalently, we say that a solution (d1, ..., dk) ∈ C is an assignment of the
value di to the variable xi ,∀1 ≤ i ≤ k, and that this assignment satisfies C
(intentional form). If C = ∅, we say that it is inconsistent.
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MetaheuristicsConstraint Satisfaction Problem

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X , together with a finite set of constraints
C , each on a subset of X . A solution to a CSP is an assignment of a value
d ∈ D(x) to each x ∈ X , such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables x1, . . . , xn, together with an
objective function f : D(x1)× · · · × D(xn)→ Q that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the
value of f (d).
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MetaheuristicsCP-model

CP formulation:

variables : domain(yi) = {1, . . . ,K} ∀i ∈ V

constraints : yi 6= yj ∀ij ∈ E(G)

alldifferent({yi | i ∈ C}) ∀C ∈ C
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MetaheuristicsOutline

1. Metaheuristics
Stochastic Local Search
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MetaheuristicsEscaping Local Optima

Possibilities:

I Restart: re-initialize search whenever a local optimum
is encountered.
(Often rather ineffective due to cost of initialization.)

I Non-improving steps: in local optima, allow selection of
candidate solutions with equal or worse evaluation function value, e.g.,
using minimally worsening steps.
(Can lead to long walks in plateaus, i.e., regions of
search positions with identical evaluation function.)

I Diversify the neighborhood: multiple, variable-size, rich (while still
preserving incremental algorithmics insights)

Note: None of these mechanisms is guaranteed to always
escape effectively from local optima.
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Metaheuristics

Diversification vs Intensification

I Intensification: aims at greedily increasing solution quality, e.g., by
exploiting the evaluation function.

I Diversification: aims at preventing search stagnation, that is, the search
process getting trapped in confined regions.

I Goal-directed and randomized components of LS strategy need to be
balanced carefully.

Examples:
I Iterative Improvement (II): intensification strategy.
I Uninformed Random Walk/Picking (URW/P): diversification strategy.

Balanced combination of intensification and diversification mechanisms forms
the basis for advanced LS methods.
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MetaheuristicsOutline

1. Metaheuristics
Stochastic Local Search
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MetaheuristicsRandomized Iterative Impr.

Key idea: In each search step, with a fixed probability
perform an uninformed random walk step instead of
an iterative improvement step.

Randomized Iterative Improvement (RII):
determine initial candidate solution s
while termination condition is not satisfied do

With probability wp:
choose a neighbor s ′ of s uniformly at random

Otherwise:
choose a neighbor s ′ of s such that f (s ′) < f (s) or,
if no such s ′ exists, choose s ′ such that f (s ′) is minimal

s := s ′
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Metaheuristics

Example: Randomized Iterative Improvement for SAT

procedure RIISAT(F , wp, maxSteps)
input: a formula F , probability wp, integer maxSteps
output: a model ϕ for F or ∅
choose assignment ϕ for F uniformly at random;
steps := 0;
while not(ϕ is not proper) and (steps < maxSteps) do

with probability wp do
select x in X uniformly at random and flip;

otherwise
select x in X c uniformly at random from those that

maximally decrease number of clauses violated;
change ϕ;
steps := steps+1;

end
if ϕ is a model for F then return ϕ
else return ∅
end

end RIISAT
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Metaheuristics

Example: Randomized Iterative Improvement for GCP

procedure RIIGCP(F , wp, maxSteps)
input: a graph G and k, probability wp, integer maxSteps
output: a proper coloring ϕ for G or ∅
choose coloring ϕ of G uniformly at random;
steps := 0;
while not(ϕ is not proper) and (steps < maxSteps) do

with probability wp do
select v in V and c in Γ uniformly at random;

otherwise
select v in V c and c in Γ uniformly at random from those that

maximally decrease number of edge violations;
change color of v in ϕ;
steps := steps+1;

end
if ϕ is proper for G then return ϕ
else return ∅
end

end RIIGCP
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Metaheuristics

Note:

I No need to terminate search when local minimum is encountered

Instead: Impose limit on number of search steps or CPU time,
from beginning of search or after last improvement.

I Probabilistic mechanism permits arbitrary long sequences
of random walk steps

Therefore: When run sufficiently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

I GWSAT [Selman et al., 1994],
was at some point state-of-the-art for SAT.
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