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1. Vertex Coloring

2. Stochastic Local Search
I Randomized Iterative Improvement
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Trajectory Based Metaheuristics
Population Based MetaheuristicsMin-Conflict Heuristic

For a general CSP:
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Population Based MetaheuristicsMin-Conflict Heuristic

On the N-queens problem:� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {
select(q in Size : S.violations(queen[q])>0) {
selectMin(v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations()

<<endl;
}
it = it + 1;

}
}
cout << queen << endl;� �
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Trajectory Based Metaheuristics
Population Based MetaheuristicsMin-Conflict + Random Walk for SAT

Example of slc heuristic: with prob. wp select a random move, with prob.
1− wp select the best
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Trajectory Based Metaheuristics
Population Based MetaheuristicsProbabilistic Iterative Improv.

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realization:

I Function p(f , s): determines probability distribution
over neighbors of s based on their values under
evaluation function f .

I Let step(s, s ′) := p(f , s, s ′).

Note:

I Behavior of PII crucially depends on choice of p.
I II and RII are special cases of PII.
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Example: Metropolis PII for the TSP

I Search space S : set of all Hamiltonian cycles in given graph G .
I Solution set: same as S
I Neighborhood relation N (s): 2-edge-exchange
I Initialization: an Hamiltonian cycle uniformly at random.
I Step function: implemented as 2-stage process:

1. select neighbor s ′ ∈ N(s) uniformly at random;
2. accept as new search position with probability:

p(T , s, s ′) :=

{
1 if f (s ′) ≤ f (s)
exp −(f (s′)−f (s))

T otherwise

(Metropolis condition), where temperature parameter T controls
likelihood of accepting worsening steps.

I Termination: upon exceeding given bound on run-time.
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Trajectory Based Metaheuristics
Population Based MetaheuristicsGreat Deluge

Another version of probabilistic iterative improvement:

Key Idea: start with a minimum water level,

I at each step a candidate move is generated at random, the move is
accepted if its quality is greater than the water level.

I After the number of neighbors have been sampled at a certain water
level, the water level is updated.

I The algorithm stops if we have reached the maximum water level or if
we have done a certain number of non-improving solutions.
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In greatdeluge.hh� �
InitializeRun()
{
level = initial_level ∗ this−>current_state_cost;
}

SelectMove()
{

this−>SelectRandomMove();
}

StopCriterion()
{

return level < min_level ∗ this−>best_state_cost;
}

UpdateIterationCounter()
{

if (this−>number_of_iterations % neighbors_sampled == 0)
{
level ∗= level_rate;
}

}

AcceptableMove()
{

return LessOrEqualThan(this−>current_move_cost,(CFtype)0) || LessOrEqualThan((double)(
this−>current_move_cost + this−>current_state_cost),level);

}� �
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Trajectory Based Metaheuristics
Population Based Metaheuristics

Inspired by statistical mechanics in matter physics:
I candidate solutions ∼= states of physical system
I evaluation function ∼= thermodynamic energy
I globally optimal solutions ∼= ground states
I parameter T ∼= physical temperature

Note: In physical process (e.g., annealing of metals), perfect ground states
are achieved by very slow lowering of temperature.

fast slow
13



Trajectory Based Metaheuristics
Population Based MetaheuristicsSimulated Annealing

Key idea: Vary temperature parameter, i.e., probability of accepting
worsening moves, in Probabilistic Iterative Improvement according to
annealing schedule (aka cooling schedule).

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T according to annealing schedule
while termination condition is not satisfied: do

while maintain same temperature T according to annealing schedule do
probabilistically choose a neighbor s ′ of s using proposal mechanism
if s ′ satisfies probabilistic acceptance criterion (depending on T ) then

s := s ′

update T according to annealing schedule
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Trajectory Based Metaheuristics
Population Based Metaheuristics

I 2-stage step function based on
I proposal mechanism (often uniform random choice from N(s))
I acceptance criterion (often Metropolis condition)

I Annealing schedule
(function mapping run-time t onto temperature T (t)):

I initial temperature T0

(may depend on properties of given problem instance)
I temperature update scheme

(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti )

I number of search steps to be performed at each temperature
(often multiple of neighborhood size)

I may be static or dynamic
I seek to balance moderate execution time with asymptotic behavior

properties

I Termination predicate: often based on acceptance ratio,
i.e., ratio accepted / proposed steps or number of idle iterations
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Trajectory Based Metaheuristics
Population Based Metaheuristics

Example: Simulated Annealing for TSP

Extension of previous PII algorithm for the TSP, with

I proposal mechanism: uniform random choice from
2-exchange neighborhood;

I acceptance criterion: Metropolis condition (always accept improving
steps, accept worsening steps with probability exp [−(f (s ′)− f (s))/T ]);

I annealing schedule: geometric cooling T := 0.95 · T with n · (n − 1)
steps at each temperature (n = number of vertices in given graph), T0
chosen such that 97% of proposed steps are accepted;

I termination: when for five successive temperature values no
improvement in solution quality and acceptance ratio < 2%.

Improvements:

I neighborhood pruning (e.g., candidate lists for TSP)
I greedy initialization (e.g., by using NNH for the TSP)
I low temperature starts (to prevent good initial candidate solutions from

being too easily destroyed by worsening steps)
16
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Trajectory Based Metaheuristics
Population Based MetaheuristicsIterated Local Search

Key Idea: Use two types of LS steps:

I subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

I perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
while termination criterion is not satisfied do

r := s
perform perturbation on s
perform subsidiary local search on s
based on acceptance criterion,
keep s or revert to s := r
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Trajectory Based Metaheuristics
Population Based Metaheuristics

Note:

I Subsidiary local search results in a local minimum.

I ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

I Perturbation phase and acceptance criterion may use aspects of search
history (i.e., limited memory).

I In a high-performance ILS algorithm, subsidiary local search,
perturbation mechanism and acceptance criterion need to complement
each other well.
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Trajectory Based Metaheuristics
Population Based MetaheuristicsComponents

Subsidiary local search: (1)

I More effective subsidiary local search procedures lead to better ILS
performance.
Example: 2-opt vs 3-opt vs LK for TSP.

I Often, subsidiary local search = iterative improvement,
but more sophisticated LS methods can be used.
(e.g., Tabu Search).
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Trajectory Based Metaheuristics
Population Based MetaheuristicsComponents

Perturbation mechanism: (1)

I Needs to be chosen such that its effect cannot be easily undone by
subsequent local search phase.
(Often achieved by search steps larger neighborhood.)
Example: local search = 3-opt, perturbation = 4-exchange steps in ILS
for TSP.

I A perturbation phase may consist of one or more
perturbation steps.

I Weak perturbation ⇒ short subsequent local search phase;
but: risk of revisiting current local minimum.

I Strong perturbation ⇒ more effective escape from local minima;
but: may have similar drawbacks as random restart.

I Advanced ILS algorithms may change nature and/or strength of
perturbation adaptively during search.

25



Trajectory Based Metaheuristics
Population Based MetaheuristicsComponents

Acceptance criteria: (1)

I Always accept the best of the two candidate solutions

⇒ ILS performs Iterative Improvement in the space of local optima
reached by subsidiary local search.

I Always accept the most recent of the two candidate solutions

⇒ ILS performs random walk in the space of local optima reached by
subsidiary local search.

I Intermediate behavior: select between the two candidate solutions based
on the Metropolis criterion (e.g., used in Large Step Markov Chains
[Martin et al., 1991].

I Advanced acceptance criteria take into account search history,
e.g., by occasionally reverting to incumbent solution.
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Trajectory Based Metaheuristics
Population Based MetaheuristicsExamples

Example: Iterated Local Search for the TSP (1)

I Given: TSP instance π.

I Search space: Hamiltonian cycles in π.

I Subsidiary local search: Lin-Kernighan variable depth search algorithm

I Perturbation mechanism:
‘double-bridge move’ = particular 4-exchange step:

A

BC

D

double bridge 

move

A

BC

D

I Acceptance criterion: Always return the best of the two given
candidate round trips.
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Key idea: Avoid repeating history (memory)
How can we remember the history without

I memorizing full solutions (space)

I computing hash functions (time)

 use attributes
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Key idea: Use aspects of search history (memory) to escape from local
minima.

I Associate tabu attributes with candidate solutions or
solution components.

I Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best candidate solution s ′ in N ′
||
|| update tabu attributes based on s ′
b s := s ′
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Example: Tabu Search for SAT
I Search space: set of all complete assignments of X .
I Solution set: models of the formula.
I Neighborhood relation: 1-flip
I Memory: Associate tabu status (Boolean value) with each pair

(literal,value) (x , val).
I Initialization: a random assignment
I Search steps:

I pairs (x , v) are tabu if they have been changed
in the last tt steps;

I neighboring assignments are admissible if they
can be reached by changing a non-tabu pair
or have fewer unsatisfied constraints than the best assignments
seen so far (aspiration criterion);

I choose uniformly at random admissible neighbors
with minimal number of unsatisfied constraints.

I Termination: upon finding a feasible assignment or after given bound
on number of search steps has been reached or after a number of idle
iterations
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Note:

I Admissible neighbors of s: Non-tabu search positions in N(s)

I Tabu tenure: a fixed number of subsequent search steps
for which the last search position
or the solution components just added/removed from it
are declared tabu

I Aspiration criterion (often used): specifies conditions under which
tabu status may be overridden (e.g., if considered step leads to
improvement in incumbent solution).

I Crucial for efficient implementation:
I efficient best improvement local search
 pruning, delta updates, (auxiliary) data structures

I efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx ; x is tabu if
it − itx < tt, where it = current search step number.
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Variable Neighborhood Search is a method based on the systematic change of
the neighborhood during the search.

Central observations

I a local minimum w.r.t. one neighborhood function is not necessarily
locally minimal w.r.t. another neighborhood function

I a global optimum is locally optimal w.r.t. all neighborhood functions
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Key principle: change the neighborhood during the search

I Several adaptations of this central principle

I (Basic) Variable Neighborhood Descent (VND)

I Variable Neighborhood Search (VNS)

I Reduced Variable Neighborhood Search (RVNS)

I Variable Neighborhood Decomposition Search (VNDS)

I Skewed Variable Neighborhood Search (SVNS)

I Notation

I Nk , k = 1, 2, . . . , km is a set of neighborhood functions

I Nk(s) is the set of solutions in the k-th neighborhood of s
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How to generate the various neighborhood functions?

I for many problems different neighborhood functions (local searches)
exist / are in use

I change parameters of existing local search algorithms
I use k-exchange neighborhoods; these can be naturally extended
I many neighborhood functions are associated with distance measures; in

this case increase the distance
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Trajectory Based Metaheuristics
Population Based MetaheuristicsBasic Variable Neighborhood Descent

Procedure BVND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
k ← 1
repeat

s ′ ← FindBestNeighbor(s,Nk)
if f (s ′) < f (s) then

s ← s ′

(k ← 1)
else

k ← k + 1
until k = kmax ;
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Procedure VND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
k ← 1
repeat

s ′ ← IterativeImprovement(s,Nk)
if f (s ′) < f (s) then

s ← s ′

k ← 1
else

k ← k + 1
until k = kmax ;
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I Final solution is locally optimal w.r.t. all neighborhoods

I First improvement may be applied instead of best improvement

I Typically, order neighborhoods from smallest to largest

I If iterative improvement algorithms IIk , k = 1, . . . , kmax
are available as black-box procedures:

I order black-boxes
I apply them in the given order
I possibly iterate starting from the first one
I order chosen by: solution quality and speed
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Procedure BVNS
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
repeat

k ← 1
repeat

s ′ ← RandomPicking(s,Nk)
s ′′ ← IterativeImprovement(s ′,Nk)
if f (s ′′) < f (s) then

s ← s ′′

k ← 1
else

k ← k + 1
until k = kmax ;

until Termination Condition;
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To decide:
I which neighborhoods
I how many
I which order
I which change strategy

I Extended version: parameters kmin and kstep; set k ← kmin and increase
by kstep if no better solution is found (achieves diversification)
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I Key Idea: Modify the evaluation function whenever
a local optimum is encountered.

I Associate weights (penalties) with solution components; these determine
impact of components on evaluation function value.

I Perform Iterative Improvement; when in local minimum, increase
penalties of some solution components until improving steps become
available.

Guided Local Search (GLS):
determine initial candidate solution s
initialize penalties
while termination criterion is not satisfied do

compute modified evaluation function g ′ from g
based on penalties

perform subsidiary local search on s
using evaluation function g ′

update penalties based on s
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Guided Local Search (continued)

I Modified evaluation function:

g ′(s) := f (s) +
∑

i∈SC(s)

penalty(i),

where SC (s) is the set of solution components
used in candidate solution s.

I Penalty initialization: For all i : penalty(i) := 0.

I Penalty update in local minimum s: Typically involves penalty increase
of some or all solution components of s; often also occasional penalty
decrease or penalty smoothing.

I Subsidiary local search: Often Iterative Improvement.
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Potential problem:

Solution components required for (optimal) solution
may also be present in many local minima.

Possible solutions:

A: Occasional decreases/smoothing of penalties.
B: Only increase penalties of solution components that are

least likely to occur in (optimal) solutions.

Implementation of B:
Only increase penalties of solution components i with maximal utility
[Voudouris and Tsang, 1995]:

util(s, i) :=
fi (s)

1+ penalty(i)

where fi (s) is the solution quality contribution of i in s.
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Example: Guided Local Search (GLS) for the TSP

[Voudouris and Tsang 1995; 1999]

I Given: TSP instance π
I Search space: Hamiltonian cycles in π with n vertices;
I Neighborhood: 2-edge-exchange;

I Solution components edges of π;
fe(G , p) := w(e);

I Penalty initialization: Set all edge penalties to zero.

I Subsidiary local search: Iterative First Improvement.

I Penalty update: Increment penalties of all edges with maximal utility by

λ := 0.3 · w(s2-opt)

n

where s2-opt = 2-optimal tour.
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