
DM841

Discrete Optimization

Lecture 8
Stochastic Local Search and Metaheuristics
Simulated Annealing, Tabu Search, Variable

Neighborhood Search

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Trajectory Based Metaheuristics
Population Based MetaheuristicsReview

1. Vertex Coloring

2. Stochastic Local Search
I Randomized Iterative Improvement

2

Trajectory Based Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms
Ant Colony Optimization

3

Trajectory Based Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms
Ant Colony Optimization

4

Trajectory Based Metaheuristics
Population Based MetaheuristicsMin-Conflict Heuristic

For a general CSP:

5

Trajectory Based Metaheuristics
Population Based MetaheuristicsMin-Conflict Heuristic

On the N-queens problem:� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {
select(q in Size : S.violations(queen[q])>0) {
selectMin(v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations()

<<endl;
}
it = it + 1;

}
}
cout << queen << endl;� �

6

Trajectory Based Metaheuristics
Population Based MetaheuristicsMin-Conflict + Random Walk for SAT

Example of slc heuristic: with prob. wp select a random move, with prob.
1− wp select the best

7

Trajectory Based Metaheuristics
Population Based MetaheuristicsProbabilistic Iterative Improv.

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realization:

I Function p(f , s): determines probability distribution
over neighbors of s based on their values under
evaluation function f .

I Let step(s, s ′) := p(f , s, s ′).

Note:

I Behavior of PII crucially depends on choice of p.
I II and RII are special cases of PII.

8

Trajectory Based Metaheuristics
Population Based Metaheuristics

Example: Metropolis PII for the TSP

I Search space S : set of all Hamiltonian cycles in given graph G .
I Solution set: same as S
I Neighborhood relation N (s): 2-edge-exchange
I Initialization: an Hamiltonian cycle uniformly at random.
I Step function: implemented as 2-stage process:

1. select neighbor s ′ ∈ N(s) uniformly at random;
2. accept as new search position with probability:

p(T , s, s ′) :=

{
1 if f (s ′) ≤ f (s)
exp −(f (s′)−f (s))

T otherwise

(Metropolis condition), where temperature parameter T controls
likelihood of accepting worsening steps.

I Termination: upon exceeding given bound on run-time.

9

Trajectory Based Metaheuristics
Population Based MetaheuristicsGreat Deluge

Another version of probabilistic iterative improvement:

Key Idea: start with a minimum water level,

I at each step a candidate move is generated at random, the move is
accepted if its quality is greater than the water level.

I After the number of neighbors have been sampled at a certain water
level, the water level is updated.

I The algorithm stops if we have reached the maximum water level or if
we have done a certain number of non-improving solutions.

10

In greatdeluge.hh� �
InitializeRun()
{
level = initial_level ∗ this−>current_state_cost;
}

SelectMove()
{

this−>SelectRandomMove();
}

StopCriterion()
{

return level < min_level ∗ this−>best_state_cost;
}

UpdateIterationCounter()
{

if (this−>number_of_iterations % neighbors_sampled == 0)
{
level ∗= level_rate;
}

}

AcceptableMove()
{

return LessOrEqualThan(this−>current_move_cost,(CFtype)0) || LessOrEqualThan((double)(
this−>current_move_cost + this−>current_state_cost),level);

}� �

Trajectory Based Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms
Ant Colony Optimization

12

Trajectory Based Metaheuristics
Population Based Metaheuristics

Inspired by statistical mechanics in matter physics:
I candidate solutions ∼= states of physical system
I evaluation function ∼= thermodynamic energy
I globally optimal solutions ∼= ground states
I parameter T ∼= physical temperature

Note: In physical process (e.g., annealing of metals), perfect ground states
are achieved by very slow lowering of temperature.

fast slow
13

Trajectory Based Metaheuristics
Population Based MetaheuristicsSimulated Annealing

Key idea: Vary temperature parameter, i.e., probability of accepting
worsening moves, in Probabilistic Iterative Improvement according to
annealing schedule (aka cooling schedule).

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T according to annealing schedule
while termination condition is not satisfied: do

while maintain same temperature T according to annealing schedule do
probabilistically choose a neighbor s ′ of s using proposal mechanism
if s ′ satisfies probabilistic acceptance criterion (depending on T) then

s := s ′

update T according to annealing schedule

14

Trajectory Based Metaheuristics
Population Based Metaheuristics

I 2-stage step function based on
I proposal mechanism (often uniform random choice from N(s))
I acceptance criterion (often Metropolis condition)

I Annealing schedule
(function mapping run-time t onto temperature T (t)):

I initial temperature T0

(may depend on properties of given problem instance)
I temperature update scheme

(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)

I number of search steps to be performed at each temperature
(often multiple of neighborhood size)

I may be static or dynamic
I seek to balance moderate execution time with asymptotic behavior

properties

I Termination predicate: often based on acceptance ratio,
i.e., ratio accepted / proposed steps or number of idle iterations

15

Trajectory Based Metaheuristics
Population Based Metaheuristics

Example: Simulated Annealing for TSP

Extension of previous PII algorithm for the TSP, with

I proposal mechanism: uniform random choice from
2-exchange neighborhood;

I acceptance criterion: Metropolis condition (always accept improving
steps, accept worsening steps with probability exp [−(f (s ′)− f (s))/T]);

I annealing schedule: geometric cooling T := 0.95 · T with n · (n − 1)
steps at each temperature (n = number of vertices in given graph), T0
chosen such that 97% of proposed steps are accepted;

I termination: when for five successive temperature values no
improvement in solution quality and acceptance ratio < 2%.

Improvements:

I neighborhood pruning (e.g., candidate lists for TSP)
I greedy initialization (e.g., by using NNH for the TSP)
I low temperature starts (to prevent good initial candidate solutions from

being too easily destroyed by worsening steps)
16

Trajectory Based Metaheuristics
Population Based MetaheuristicsProfiling

0.0

0.5

1.0

1.5

2.0

2.5
T

em
pe

ra
tu

re

Run A

0 10 20 30 40 50

0

100

200

300

400

500

600

Iterations 107

C
os

t f
un

ct
io

n
va

lu
e

Run B

0 10 20 30 40 50

Iterations 107

18

Trajectory Based Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms
Ant Colony Optimization

21

Trajectory Based Metaheuristics
Population Based MetaheuristicsIterated Local Search

Key Idea: Use two types of LS steps:

I subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

I perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
while termination criterion is not satisfied do

r := s
perform perturbation on s
perform subsidiary local search on s
based on acceptance criterion,
keep s or revert to s := r

22

Trajectory Based Metaheuristics
Population Based Metaheuristics

Note:

I Subsidiary local search results in a local minimum.

I ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

I Perturbation phase and acceptance criterion may use aspects of search
history (i.e., limited memory).

I In a high-performance ILS algorithm, subsidiary local search,
perturbation mechanism and acceptance criterion need to complement
each other well.

23

Trajectory Based Metaheuristics
Population Based MetaheuristicsComponents

Subsidiary local search: (1)

I More effective subsidiary local search procedures lead to better ILS
performance.
Example: 2-opt vs 3-opt vs LK for TSP.

I Often, subsidiary local search = iterative improvement,
but more sophisticated LS methods can be used.
(e.g., Tabu Search).

24

Trajectory Based Metaheuristics
Population Based MetaheuristicsComponents

Perturbation mechanism: (1)

I Needs to be chosen such that its effect cannot be easily undone by
subsequent local search phase.
(Often achieved by search steps larger neighborhood.)
Example: local search = 3-opt, perturbation = 4-exchange steps in ILS
for TSP.

I A perturbation phase may consist of one or more
perturbation steps.

I Weak perturbation ⇒ short subsequent local search phase;
but: risk of revisiting current local minimum.

I Strong perturbation ⇒ more effective escape from local minima;
but: may have similar drawbacks as random restart.

I Advanced ILS algorithms may change nature and/or strength of
perturbation adaptively during search.

25

Trajectory Based Metaheuristics
Population Based MetaheuristicsComponents

Acceptance criteria: (1)

I Always accept the best of the two candidate solutions

⇒ ILS performs Iterative Improvement in the space of local optima
reached by subsidiary local search.

I Always accept the most recent of the two candidate solutions

⇒ ILS performs random walk in the space of local optima reached by
subsidiary local search.

I Intermediate behavior: select between the two candidate solutions based
on the Metropolis criterion (e.g., used in Large Step Markov Chains
[Martin et al., 1991].

I Advanced acceptance criteria take into account search history,
e.g., by occasionally reverting to incumbent solution.

26

Trajectory Based Metaheuristics
Population Based MetaheuristicsExamples

Example: Iterated Local Search for the TSP (1)

I Given: TSP instance π.

I Search space: Hamiltonian cycles in π.

I Subsidiary local search: Lin-Kernighan variable depth search algorithm

I Perturbation mechanism:
‘double-bridge move’ = particular 4-exchange step:

A

BC

D

double bridge

move

A

BC

D

I Acceptance criterion: Always return the best of the two given
candidate round trips.

27

Trajectory Based Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms
Ant Colony Optimization

30

Trajectory Based Metaheuristics
Population Based Metaheuristics

Key idea: Avoid repeating history (memory)
How can we remember the history without

I memorizing full solutions (space)

I computing hash functions (time)

 use attributes

31

Trajectory Based Metaheuristics
Population Based MetaheuristicsTabu Search

Key idea: Use aspects of search history (memory) to escape from local
minima.

I Associate tabu attributes with candidate solutions or
solution components.

I Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best candidate solution s ′ in N ′
||
|| update tabu attributes based on s ′
b s := s ′

32

Trajectory Based Metaheuristics
Population Based Metaheuristics

Example: Tabu Search for SAT
I Search space: set of all complete assignments of X .
I Solution set: models of the formula.
I Neighborhood relation: 1-flip
I Memory: Associate tabu status (Boolean value) with each pair

(literal,value) (x , val).
I Initialization: a random assignment
I Search steps:

I pairs (x , v) are tabu if they have been changed
in the last tt steps;

I neighboring assignments are admissible if they
can be reached by changing a non-tabu pair
or have fewer unsatisfied constraints than the best assignments
seen so far (aspiration criterion);

I choose uniformly at random admissible neighbors
with minimal number of unsatisfied constraints.

I Termination: upon finding a feasible assignment or after given bound
on number of search steps has been reached or after a number of idle
iterations

35

Trajectory Based Metaheuristics
Population Based Metaheuristics

Note:

I Admissible neighbors of s: Non-tabu search positions in N(s)

I Tabu tenure: a fixed number of subsequent search steps
for which the last search position
or the solution components just added/removed from it
are declared tabu

I Aspiration criterion (often used): specifies conditions under which
tabu status may be overridden (e.g., if considered step leads to
improvement in incumbent solution).

I Crucial for efficient implementation:
I efficient best improvement local search
 pruning, delta updates, (auxiliary) data structures

I efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx ; x is tabu if
it − itx < tt, where it = current search step number.

36

Trajectory Based Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms
Ant Colony Optimization

43

Trajectory Based Metaheuristics
Population Based MetaheuristicsVariable Neighborhood Search

Variable Neighborhood Search is a method based on the systematic change of
the neighborhood during the search.

Central observations

I a local minimum w.r.t. one neighborhood function is not necessarily
locally minimal w.r.t. another neighborhood function

I a global optimum is locally optimal w.r.t. all neighborhood functions

44

Trajectory Based Metaheuristics
Population Based Metaheuristics

Key principle: change the neighborhood during the search

I Several adaptations of this central principle

I (Basic) Variable Neighborhood Descent (VND)

I Variable Neighborhood Search (VNS)

I Reduced Variable Neighborhood Search (RVNS)

I Variable Neighborhood Decomposition Search (VNDS)

I Skewed Variable Neighborhood Search (SVNS)

I Notation

I Nk , k = 1, 2, . . . , km is a set of neighborhood functions

I Nk(s) is the set of solutions in the k-th neighborhood of s

45

Trajectory Based Metaheuristics
Population Based Metaheuristics

How to generate the various neighborhood functions?

I for many problems different neighborhood functions (local searches)
exist / are in use

I change parameters of existing local search algorithms
I use k-exchange neighborhoods; these can be naturally extended
I many neighborhood functions are associated with distance measures; in

this case increase the distance

46

Trajectory Based Metaheuristics
Population Based MetaheuristicsBasic Variable Neighborhood Descent

Procedure BVND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
k ← 1
repeat

s ′ ← FindBestNeighbor(s,Nk)
if f (s ′) < f (s) then

s ← s ′

(k ← 1)
else

k ← k + 1
until k = kmax ;

47

Trajectory Based Metaheuristics
Population Based MetaheuristicsVariable Neighborhood Descent

Procedure VND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
k ← 1
repeat

s ′ ← IterativeImprovement(s,Nk)
if f (s ′) < f (s) then

s ← s ′

k ← 1
else

k ← k + 1
until k = kmax ;

48

Trajectory Based Metaheuristics
Population Based Metaheuristics

I Final solution is locally optimal w.r.t. all neighborhoods

I First improvement may be applied instead of best improvement

I Typically, order neighborhoods from smallest to largest

I If iterative improvement algorithms IIk , k = 1, . . . , kmax
are available as black-box procedures:

I order black-boxes
I apply them in the given order
I possibly iterate starting from the first one
I order chosen by: solution quality and speed

49

Trajectory Based Metaheuristics
Population Based MetaheuristicsBasic Variable Neighborhood Search

Procedure BVNS
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
repeat

k ← 1
repeat

s ′ ← RandomPicking(s,Nk)
s ′′ ← IterativeImprovement(s ′,Nk)
if f (s ′′) < f (s) then

s ← s ′′

k ← 1
else

k ← k + 1
until k = kmax ;

until Termination Condition;

51

Trajectory Based Metaheuristics
Population Based Metaheuristics

To decide:
I which neighborhoods
I how many
I which order
I which change strategy

I Extended version: parameters kmin and kstep; set k ← kmin and increase
by kstep if no better solution is found (achieves diversification)

52

Trajectory Based Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms
Ant Colony Optimization

56

Trajectory Based Metaheuristics
Population Based MetaheuristicsGuided Local Search

I Key Idea: Modify the evaluation function whenever
a local optimum is encountered.

I Associate weights (penalties) with solution components; these determine
impact of components on evaluation function value.

I Perform Iterative Improvement; when in local minimum, increase
penalties of some solution components until improving steps become
available.

Guided Local Search (GLS):
determine initial candidate solution s
initialize penalties
while termination criterion is not satisfied do

compute modified evaluation function g ′ from g
based on penalties

perform subsidiary local search on s
using evaluation function g ′

update penalties based on s

57

Trajectory Based Metaheuristics
Population Based Metaheuristics

Guided Local Search (continued)

I Modified evaluation function:

g ′(s) := f (s) +
∑

i∈SC(s)

penalty(i),

where SC (s) is the set of solution components
used in candidate solution s.

I Penalty initialization: For all i : penalty(i) := 0.

I Penalty update in local minimum s: Typically involves penalty increase
of some or all solution components of s; often also occasional penalty
decrease or penalty smoothing.

I Subsidiary local search: Often Iterative Improvement.

58

Trajectory Based Metaheuristics
Population Based Metaheuristics

Potential problem:

Solution components required for (optimal) solution
may also be present in many local minima.

Possible solutions:

A: Occasional decreases/smoothing of penalties.
B: Only increase penalties of solution components that are

least likely to occur in (optimal) solutions.

Implementation of B:
Only increase penalties of solution components i with maximal utility
[Voudouris and Tsang, 1995]:

util(s, i) :=
fi (s)

1+ penalty(i)

where fi (s) is the solution quality contribution of i in s.
59

Trajectory Based Metaheuristics
Population Based Metaheuristics

Example: Guided Local Search (GLS) for the TSP

[Voudouris and Tsang 1995; 1999]

I Given: TSP instance π
I Search space: Hamiltonian cycles in π with n vertices;
I Neighborhood: 2-edge-exchange;

I Solution components edges of π;
fe(G , p) := w(e);

I Penalty initialization: Set all edge penalties to zero.

I Subsidiary local search: Iterative First Improvement.

I Penalty update: Increment penalties of all edges with maximal utility by

λ := 0.3 · w(s2-opt)

n

where s2-opt = 2-optimal tour.

60

Trajectory Based Metaheuristics
Population Based MetaheuristicsSummary

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms
Ant Colony Optimization

62

Trajectory Based Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms
Ant Colony Optimization

63

Trajectory Based Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms
Ant Colony Optimization

64

Trajectory Based Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms
Ant Colony Optimization

65

	Trajectory Based Metaheuristics
	Stochastic Local Search
	Simulated Annealing
	Iterated Local Search
	Tabu Search
	Variable Neighborhood Search
	Guided Local Search

	Population Based Metaheuristics
	Evolutionary Algorithms
	Ant Colony Optimization

