
DM841

Discrete Optimization

Part II

Lecture 10
Propagation Events and Implementations

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Generic Rules Iteration
SystemsOutline

1. Generic Rules Iteration

2. Systems

2



Generic Rules Iteration
SystemsOutline

1. Generic Rules Iteration

2. Systems

3



Generic Rules Iteration
Systems

Algorithms for constraint propagation:

I scheduling steps of atomic reduction
I termination criterion: local consistency

I How to schedule the application of reduction rules to guarantee
termination?

I How to avoid (at low cost) the application of redundant rules?

I Have all derivations the same result?

I How can we characterize it?

4



Generic Rules Iteration
SystemsPropagators

I Given P a reduction rule is a function f from SP to SP for all P ′ ∈ SP ,
f (P ′) ∈ SP .
(most cases take care of one a single variable and a single constraints):

I Given C in P a propagator f for C is a reduction rule from SP to SP that
tightens only domains independently of the constraints other than C .

I A propagator f can be seen as a function: f : §ND → SND

I A propagator f is correct for C iff it does not remove any assignment for
C : {a ∈ D} ∩ C = {a ∈ f (D)} ∩ C

5



Generic Rules Iteration
Systems

Systems consider set of propagators to implement a constraint
(However global constraints have a single propagator.)

Example

C ≡ x1 ≤ x2 + 1

f (D, x1) = p(D)(x1) = {n ∈ D(X1) | n ≤ max
D
{x2}+ 1}

input(p) = x2, output(p) = x1

6



Generic Rules Iteration
SystemsPropagators

I Properties of propagators:
Given P, f can be:

I contracting (or decreasing): f (P) ≤ P
I monotonic if P1 ≤ P2 ⇒ f (P1) ≤ f (P2)
I idempotent if f (f (P)) = f (P) (strong if for all P ∈ SP , weak if for some
P ∈ SP)

I commuting if fg(P) = gf (P)
I subsumed (or entailed) by P iff ∀P1 ≤ P : f (P1) = P1

Eg:

p(D)(x) = D(x) ∩ {1, 2, 3}

implementing the domain constraint x ∈ {1, 2, 3}. After p has been
executed once, there is no point to execute p again as for all D ′

D ′ ≤ p(D) =⇒ p(D ′) = D ′

(particular case when all variables are instantiated)

7



Generic Rules Iteration
Systems

I Iteration: Let P = 〈X ,DE , C〉 and F = {f1, . . . , fk} a finite set of
propagators on SP . An iteration of F on P is a sequence 〈P0,P1, . . .〉 of
elements of SP defined by

P0 = P

Pj = fnj (Pj−1)

where j > 0 and nj ∈ [1, . . . , k].
I P is stable for F iff ∀f ∈ F , f (P) = P
I There may be several stable P but if F are monotonic then unique
I Let P = 〈X ,DE , C〉 and F = {f1, . . . , fk}. If 〈P0,P1, . . .〉 is infinite

iteration of F where each f ∈ F is activated infinitely often then there
exists j ≥ 0 such that Pj is stable for F (≡ j is finite!)

I If P is stable for F then it is its weakest simultaneous fixed point
(greatest mutual fixed point of all propagators).
A strongest simultaneous fixed point would be a solution (hence not
unique) which would not violate solution preservation

8



Generic Rules Iteration
SystemsIteration of Reduction Rules

If the propagator is contracting then Generic-Iteration terminates.
If propagator is monotonic then the final result does not change with the
order in which propagators are applied.

If propagators in addition to monotonic are also idempotent and commutative
then:

9



Generic Rules Iteration
SystemsIteration of Reduction Rules

Example

Recall for arc consistency:
Arc Consistency rule 1 (propagator):

〈C ; x ∈ D(x), y ∈ D(y)〉
〈C ; x ∈ D ′(x), y ∈ D(y)〉

where D ′(x) := {a ∈ D(x) | ∃b ∈ D(y), (a, b) ∈ C}

This can also be written as (on represents the join):

D(x)← D(x) ∩ π{x}(on(C ,D(y)))

Set of propagators FAC = {fij | xi ∈ X , cj ∈ C} all monotonic. ⇒ terminates in arc
consistency closure, which is fixed point for FAC .

10



Generic Rules Iteration
SystemsImprovements

Generic iteration is an example of propagator engine

Pf is set of propagators at fixed point (idempotent or subsumed)

Scheduling p: adding a propagator to the set N (not known to be at fixed
point). Yet undefined how a propagator is chosen from N

Note: search can be seen as doing incremental propagation

11



Generic Rules Iteration
SystemsImprovements

Generic iteration is an example of propagator engine
What makes it naive?

I Termination relies on strict contraction

I We always have to check all propagators for one that can strictly
contract

Ideas:

I Maintain propagators which are known to be at fixpoint

I Look at the variables that propagators actually compute with
Dependency-directed propagation

Fixpoint knowledge avoids useless execution (idempotence, subsumption)
knowledge provided by propagator

12



Generic Rules Iteration
SystemsImprovements: Events

Most solvers implement arithemitc-oriented propagators
 a reduction of a domain of a variable has different implications depending
on the type of reduction

Four types of Events:

I Any or RemValue: when a value v is removed from D(xi )

I Min or IncMin: when the minimum value of D(xi ) increases

I Max or DecMax: when the maximum value of D(xi ) decreases

I Fix or Instantiate: when D(xi ) becomes a singleton

13



Generic Rules Iteration
SystemsAC3 like

Modified AC3 to handle parameter Mtype (modification type)

The presence of (xj , c , xi , Mtype) in Q means that xj should be revised on c
because of an Mtype change in D(xi ).

14



Generic Rules Iteration
Systems

Process constraint propagation differently according to the type of event

Also: for a certain constraint it can be that a given event cannot alter the
other variables of the constraint. Hence it makes sense to:
6: foreach c ′ ∈ Γc

Mtype(xi ), Mtype ∈ Changes do ...
Example. Let c ≡ x1 ≤ x2. The only events that require propagation are
IncMin and Instantiate on x1 , and DecMax and Instantiate on x2.

15



Generic Rules Iteration
Systems

16



Generic Rules Iteration
SystemsMore Optimization

Priorities
Choose propagator

I according to cost: cheapest first

I according to expected impact

I general (queue): last-in last-out (starvation avoided), first-in first-out

17



Generic Rules Iteration
SystemsPropagator Rewriting

Another observation:
propagator for

max(x , y) = z

and values for x are smaller than for y
Replace by propagator for y = z

18



Generic Rules Iteration
SystemsOutline

1. Generic Rules Iteration

2. Systems

19



Generic Rules Iteration
SystemsArchitecture

I Detecting failure and entailment

I Domains: single data structure continously updated.
constraint store ≡ domain extension DE

I State restoration

I Finding dependent propagators (compute events and find propagators)

I Variables for propagators

20



Generic Rules Iteration
SystemsPropagation Services

I Events

I Selecting next propagator

21



Generic Rules Iteration
SystemsVariable Domains

I Domain representation
range sequence: s = {[n1,m1], . . . , [nk ,mk ]} (singly/doubly linked lists)
bit vector

I Value operations
x.getmin(), x.getmax(), x.hasval(), x.adjmin(n),
x.adjmax(n), x.excval(n)

I Iterators:� �
for (IntVarValues i(x); i(); ++i)
std::cout << i.val() << ’ ’;

for (IntVarRanges i(x); i(); ++i)
std::cout << i.min() << ".." << i.max() << ’ ’;� �

I Domain operations
I Subscriptions (p is executed whenever the domains of one of its variables

changes according to an event). Options:
I list Ei .pi pair event propagator that require execution
I a list for each event and one for each propagator
I array of propagators partitioned by events

22



Generic Rules Iteration
Systems

23



Generic Rules Iteration
SystemsPropagators

Piece of software with some private state that implements a constraint C
over some variables or parameters

The algorithm implemented is called filtering algorithm. It uses value and
domain operations and raises events that cause scheduling of other
propagators
Life cycle

24



Generic Rules Iteration
Systems

I Idempotency: it may be costly and difficult to guarantee. Some
propagators return a state:

I fixpoint (weak idempotent, ie, with respect to x rather than for all),
I no fixpoint (we do not know),
I subsumed (entailed),
I failure.

25



Generic Rules Iteration
SystemsReferences

Apt K.R. (2003). Principles of Constraint Programming. Cambridge University
Press.

Barták R. (2001). Theory and practice of constraint propagation. In Proceedings
of CPDC2001 Workshop, pp. 7–14. Gliwice.

Bessiere C. (2006). Constraint propagation. In Handbook of Constraint
Programming, edited by F. Rossi, P. van Beek, and T. Walsh, chap. 3. Elsevier.
Also as Technical Report LIRMM 06020, March 2006.

Rossi F., van Beek P., and Walsh T. (eds.) (2006). Handbook of Constraint
Programming. Elsevier.

Schulte C. (2011). Course notes, constraint programming (id2204), vt 2012.
Unpublished.

Schulte C. and Carlsson M. (2006). Finite domain constraint programming
systems. In Rossi et al. [2006].

26


	Generic Rules Iteration
	Systems

