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Global Constraints
Soft Constraints
Optimization ConstraintsDeclarative and Operational Semantic

I Declarative Semantic: specify what the constraint means. Evaluation
criteria is expressivity.

I Operational Semantic: specify how the constraint is computed, i.e., is
kept consistent with its declarative semantic. Evaluation criteria are
efficiency and effectiveness.

Example

So far, we have defined only the Declarative Semantic of the alldifferent
constraint, not its Operational Semantic.
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Global Constraints
Soft Constraints
Optimization ConstraintsDomain Consistency

Definition
A constraint C on the variables x1, . . . , xr with respective domains D1, . . . ,Dr
is called domain consistent (or generalized/hyper-arc consistent) if for each
variable xi and each value di ∈ Di there exist compatible values in the
domains of all the other variables of C , that is, there exists a tuple
(d1, . . . , di , . . . , dr ) ∈ C .

In other terms: If value v is in the domain of variable x , then there exists a
solution to the constraint with value v assigned to variable x .

Examples: alldifferent (distinct), knapsack, ...

Definition

Filtering algorithm ≡ reduction rule: reduce D(xi ) for 1 ≤ i ≤ r such that it
still contains all values that the variable can assume in a solution of C .

D(xi )← D(xi )∩{di ∈ D(xi )|D(x1×D(xi−1)×{vi}×D(xi+1)× . . . ,D(xr )}∩C 6= ∅}
Generic arc consistency algorithms are in O(erd r ).
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Global Constraints
Soft Constraints
Optimization ConstraintsConsistency and Filtering Algorithms

I Different filtering algorithms, which must be able to:
1. Check consistency of C w.r.t. the current variable domains
2. Remove inconsistent values from the variable domains

I The stronger is the level of consistency, the higher is the complexity of
the filtering algorithm: Different level of consistency (domain, bound(Z),
bound(D), range, value):

I complete filtering, optimal pruning, domain completeness ≡ domain/arc
consistency

I partial filtering, bound completeness ≡ bound relaxed completeness

... again the alldifferent case

There exist in literature several filtering algorithms for the alldifferent
constraints.
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Global Constraints
Soft Constraints
Optimization ConstraintsDecomposition Approach

A decomposition of a global constraint C is a polynomial time transformation
δk(P) replacing C by some new bounded arity constraint (and possibly new
variables) while preserving the set of tuples allowed on X (C ).

Global Constraint Decomposition

Given any P = 〈X (C ),DE , C = {C}〉, δk(P) is such that
I X (C ) ⊆ Xδk (P)
I for all xi ∈ X (C ), D(xi ) = Dδk (P)(xi )
I for all Cj ∈ Cδk (P), |X (Cj)| ≤ k and
I sol(P) = πX (C)(sol(δk(P))

Example

atmost(x1, . . . , xn, p, v) (at most p variables in x1, . . . , xn take value v).
Decomposition: n + 1 additional variables y0, . . . , yn
(xi = v ∧ yi = yi−1 + 1) ∨ (xi 6= v ∧ yi = yi−1) for all i , 1 ≤ i ≤ n, and
domains D(y0) = {0} and D(yi ) = {0, . . . , p} for 1 ≤ i ≤ n.
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Global Constraints
Soft Constraints
Optimization Constraints

These decompositions can be:

I preserving solutions

I preserving generalized arc consistency

I preserving the complexity of enforcing generalized arc consistency

The decomposition of atmost preserves solutions and generalized arc
consistency
For the alldifferent only preserving solutions. Yet sometimes it is possible
to construct a specialized algorithm that enforces GAC in polynomial time.
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Global Constraints
Soft Constraints
Optimization ConstraintsComplete Filtering for alldifferent

1. build value graph G = (X ,D(X ),E )

2. compute maximum matching M in G
3. if |M| < |X | then return false
4. mark all arcs in oriented graph GM that are not in M as unused
5. compute SCCs in GM and mark all arcs in a SCC as used
6. perform breadth-first search in GM starting from M-free vertices, and

mark all traversed arcs as used if they belong to an even path
7. for all arcs (xi , d) in GM marked as unused do

D(xi ) := D(xi ) \ d
if D(xi ) = ∅ then return false

8. return true

Overall complexity: O(n
√

m + (n + m) + m)
It can be updated incrementally if other constraints remove some values.
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Global Constraints
Soft Constraints
Optimization ConstraintsRelaxed Consistency

Definition
A constraint C on the variables x1, . . . , xm with respective domains
D1, . . . ,Dm is called bound(Z) consistent if for each variable xi and each
value di ∈ {min(Di ),max(Di )} there exist compatible values between the min
and max domain of all the other variables of C , that is, there exists a value
dj ∈ [min(Di ),max(Di )] for all j 6= i such that (d1, . . . , di , . . . , dk) ∈ C .

Definition
A constraint C on the variables x1, . . . , xm with respective domains
D1, . . . ,Dm is called range consistent if for each variable xi and each value
di ∈ Di there exist compatible values between the min and max domain of all
the other variables of C , that is, there exists a value dj ∈ [min(Di ),max(Di )]
for all j 6= i such that (d1, . . . , di , . . . , dk) ∈ C .

(bound(D) if its bounds belong to a support on C )
GAC < (bound(D), range) < bound(Z)
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Global Constraints
Soft Constraints
Optimization ConstraintsBound Consistency [Mehlorn&Thiel2000]

Definition (Convex Graph)

A bipartite graph G = (X ,Y ,E ) is convex if the vertices of Y can be
assigned distinct integers from [1, |Y |] such that for every vertex x ∈ X , the
numbers assigned to its neighbors form a subinterval of [1, |Y |].

In convex graph we can find a matching in linear time.
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Global Constraints
Soft Constraints
Optimization ConstraintsSurvey of complexity: effectiveness and efficiency

Consistency Idea Complexity Amort. Reference(s)
arc O(n2) [VanHentenryck1989]
bound Hall O(n log n) [Puget1998]

Flows [Mehlhorn&Thiel2000]
Hall [Lopez&All2003]

O(n) [Mehlhorn&Thiel2000]
[Lopez&All2003]

range Hall O(n2) [Leconte1996]
domain Flows O(n

√
m) O(n

√
k) [Régin1994],[Costa1994]

Where n = number of variables, m =
∑

i∈1...n |Di |, and
k = number of values removed.
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Global Constraints
Soft Constraints
Optimization ConstraintsFiltering cardinality

cardinality or gcc (global cardinality constraint)

Let x1, . . . , xn be assignment variables whose domains are contained in
{v1, . . . , vn′} and let {cv1 , . . . , cvn′} be count variables whose domains are
sets of integers. Then

cardinality([x1, ..., xn],[cv1 , ..., cvn′ ]) =

{(w1, ...,wn, o1, ..., on′) | wj ∈ D(xj)∀j ,
occ(vi , (w1, ...,wn)) = oi ∈ D(cvi )∀i}.

(occ number of occurrences)

 generalization of alldifferent
NP-hard to filter domain of all variables. But if constant intervals, then
polynomial algorithm via network flows. (integral feasible (s, t)-flow)
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Global Constraints
Soft Constraints
Optimization ConstraintsFiltering knapsack

Knapsack and Sum constraints (Linear constraints over integer variables)

Let x1, . . . , xn, z , c be integer variables:

knapsack([x1, . . . , xn], z , c) =(d1, . . . , dn, d) | di ∈ D(xi )∀i , d ∈ D(z), d ≤
∑

i=1,...,n

cidi

∩(d1, . . . , dn, d) | di ∈ D(xi )∀i , d ∈ D(z), d ≥
∑

i=1,...,n

cidi

 .

Binary Knapsack (Linear constraints over Boolean variables)∑
cixi = z , xi ∈ {0, 1}  lz ≤

∑
cixi ≤ uz
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Global Constraints
Soft Constraints
Optimization Constraints

Variant of the subset sum problem: Given a set of numbers find a subset
whose sum is 0.
Eg: −7,−3,−2, 5, 8 −3− 2 + 5 = 0
10 ≤ 2x1 + 3x2 + 4x3 + 5x4 ≤ 12
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Global Constraints
Soft Constraints
Optimization ConstraintsFiltering regular

“regular” constraint

Let M = (Q,Σ, δ, q0,F ) be a DFA and let X = {x1, x2, . . . , xn} be a set of
variables with D(xi ) ⊆ Σ for 1 ≤ i ≤ n. Then
regular(X ,M) = {(d1, ..., dn) | ∀i , di ∈ D(xi ), [d1, d2, . . . , dn] ∈ L(M)}.
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Global Constraints
Soft Constraints
Optimization ConstraintsOther Filtering Algorithms

I linear

I element

I disjunctive

I cumulative

18



Global Constraints
Soft Constraints
Optimization Constraintslinear

n∑
i=1

aixi + b S 0 xi ∈ [li , hi ]

Example

3x + 4y − 5z ≤ 7

x ≤ 7− 4y + 5z
3

=⇒ x ≤
⌊
7− 4ly + 5hz

3

⌋

[lx , hx ]←−
[
lx ,min(hx ,

⌊
7− 4ly + 5hz

3

⌋
)

]
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Global Constraints
Soft Constraints
Optimization Constraints

∑
i∈POS

aixi −
∑

i∈NEG

aixi ≤ b

x≤
b − 4y + 5z

3
=⇒ xj ≤

b −
∑

i∈POS\{j} aixi +
∑

i∈NEG aixi

aj

αj =
b −

∑
i∈POS\{j} ai li +

∑
i∈NEG aihi

aj

βj =
b −

∑
i∈POS\{j} aihi +

∑
i∈NEG ai li

aj

[lj , hj ]←− [max(lx , dβje),min(hj , bαjc)]

(domain consistency is NP-complete, this one is bound(Z))
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Global Constraints
Soft Constraints
Optimization Constraintselement

I element(y ,~a, z) ≡ z = ay

D(z)←− D(z) ∩ {ai | i ∈ D(y)}
D(y)←− {i ∈ D(y) | ai ∈ D(z)}

I element(y ,~x , z) ≡ z = xy

D(z)←− D(z) ∩
⋃

i∈D(y)

Dxi

D(y)←− {i ∈ D(y) | D(z) ∩ Dxi = ∅}

D(xi )←−

{
D(z) if D(y) = {i}
D(xi ) else
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Global Constraints
Soft Constraints
Optimization ConstraintsEdge Finding
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Global Constraints
Soft Constraints
Optimization ConstraintsO(n2) algorithm
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Global Constraints
Soft Constraints
Optimization ConstraintsNot first, Not Last
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Global Constraints
Soft Constraints
Optimization ConstraintsCumulative Scheduling
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Global Constraints
Soft Constraints
Optimization ConstraintsEdge Finding
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Global Constraints
Soft Constraints
Optimization ConstraintsFiltering Algorithm Design

1. Filtering algorithms based on a generic algorithm
Simple AC algorithms. Eg, element:

element(y , [2, 4, 8, 16, 32], x), x ∈ {1, 2, 3, 4, 5}

2. Filtering algorithms based on existing algorithms
Reuse existing algorithms for filtering (e.g., flows algorithms, dynamic
programming).

3. Filtering algorithms based on ad-hoc algorithms
Pay particular attention to incrementality and amortized complexity

4. Filtering algorithms based on model reformulation
See the Constraint Decomposition approach
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Global Constraints
Soft Constraints
Optimization ConstraintsSoft Constraints

Soft constraint
A soft constraint is a constraint that may be violated. We measure the
violation of each constraint, and the goal is to minimize the total amount of
violation of all soft-constraints.

Definition

A violation measure for a soft-constraint C (x1, . . . , xn) is a function

µ : D(x1)× · · · × D(xn)→ Q.

This measure is represented by a cost variable z .
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Global Constraints
Soft Constraints
Optimization ConstraintsViolation measures

I The variable-based violation measure µvar counts the minimum number
of variables that need to change their value in order to satisfy the
constraint.

I The decomposition-based violation measure µdec counts the number of
constraints in the binary decomposition that are violated.
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Global Constraints
Soft Constraints
Optimization ConstraintsThe soft-alldifferent

Definition
Let x1, x2, ..., xn, z be variables with respective finite domains
D(x1),D(x2), ...,D(xn),D(z). Let µ be a violation measure for the
alldifferent constraint. Then

soft-alldifferent(x1, ..., xn, z , µ) =

{(d1, ..., dn, d) | ∀i .di ∈ D(xi ), d ∈ D(z), µ(d1, ..., dn) ≤ d}

is the soft alldifferent constraint with respect to µ.
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Global Constraints
Soft Constraints
Optimization ConstraintsThe soft-alldifferent: an example

Example

Consider the following CSP

x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {a, b, c}, z ∈ Z+

soft-alldifferent(x1, x2, x3, x4, µ, z)
min z

We have for instance µvar (b, b, b, b) = 3 and µdec(b, b, b, b) = 6.
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Global Constraints
Soft Constraints
Optimization ConstraintsFiltering of soft-alldiff

Flow network and feasible flow Residual graph
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Global Constraints
Soft Constraints
Optimization ConstraintsOptimization Constraints

Optimization Constraint bring the costs of variable-value pair into the
declarative semantic of the constraints.

The filtering does take into account the cost, and a tuple may be inconsistent
because it does not lead to a solution of “at least” a given cost.
Basic approach, solve a sequence of decision problems, allows one-way
inference.
More powerful approach takes into account two-way inference.
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Global Constraints
Soft Constraints
Optimization Constraintsgcc with costs

cardinality or cost_gcc (global cardinality constraint with costs)

Let x1, . . . , xn be assignment variables whose domains are contained in
{v1, . . . , vn′} and let {cv1 , . . . , cvn′} be count variables whose domains are
sets of integers and w(x , d) ∈ Q are costs. Then

cost_gcc([x1, ..., xn], [cv1 , ..., cvn′ ], z ,w) =

{(d1, ..., dn, o1, ..., on′) |
{(d1, ..., dn, o1, ..., on′) ∈ gcc(([x1, ..., xn], [cv1 , ..., cvn′ ]),

∀dj ∈ D(xj) d ∈ D(z)
∑

i

w(xi , di ) ≤ d}.
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Global Constraints
Soft Constraints
Optimization ConstraintsFiltering for cost_gcc

(works on constant intervals)
Extend the (s, t)-network saw for gcc by weigths w(xi , vi ) ∀vi

1. compute initial min-cost feasible (s, t)-flow, f . (O(n(m + n log n)

2. For an arc uv with f (a) = 0 compute min cost directed path P from v
to u in the residual graph. P + a is a directed circuit.

3. since f is integer we can rerout one unit in the circuit and obtain:
cost(f ′) = cost(f ) + cost(P).

4. if cost(f ′) > max(D(z)) remove v from D(xi )

2.-4. in O(∆(m + n log n))

39



Global Constraints
Soft Constraints
Optimization ConstraintsReduced-Cost Based Filtering [Focacci&all1999]

Definition

Let X = {x1, ..., xn} be a set of variables with corresponding finite domains
D(x1), ...,D(xn). We assume that each pair (xi , j) with j ∈ D(xi ) induces a
cost cij .
We extend any global constraint C on X to an optimization constraint
opt_C by introducing
a cost variable z (that we wish to minimize) and defining

opt_C(x1, ..., xn, z , c) = {(d1, ..., dn, d)|(d1, ..., dn) ∈ C (x1, ..., xn),

∀i .di ∈ D(xi ), d ∈ D(z),
∑

i=1,...,n

cidi ≤ d}.
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Global Constraints
Soft Constraints
Optimization ConstraintsLinear Relaxation

We introduce binary variables yij for all i ∈ {1, ..., n} and j ∈ D(xi ), such
that

xi = j ⇔ yij = 1, ∀i = 1, . . . , n, ∀j ∈ D(xi ),

xi 6= j ⇔ yij = 0, ∀i = 1, . . . , n, ∀j ∈ D(xi )∑
j∈D(xi )

yij = 1, ∀i = 1, . . . , n.

+ constraint dependent linear inequalities

The reduced-costs are given w.r.t. the objective:∑
i=1,...,n

∑
j∈D(xi )

cijyij
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Global Constraints
Soft Constraints
Optimization Constraints

Example
alldiff

min
∑

i,j ci,jyi,j∑
j∈D(xi )

yij = 1, ∀i = 1, . . . , n∑
i=1,...,n yij ≤ 1, ∀j ∈ D(xi )

yij ≥ 0
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Global Constraints
Soft Constraints
Optimization ConstraintsFiltering by Reduced-Cost (aka “variable fixing”)

Recall that reduced-costs estimate the increase of the objective function
when we force a variable into the solution.

Let c̄ij be the reduced cost for the variable-value pair xi = j , and let z∗ be
the optimal value of the current linear relaxation.

We apply the following filtering rule:

if z∗ + c̄ij > maxD(z) then D(xi )← D(xi ) \ {j}.
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Global Constraints
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Optimization ConstraintsReferences
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Algorithms from the paper discussed at the blackboard
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