DM841 Discrete Optimization

Part II

Lecture 13 Structured Variables

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Resume and Outlook

Set Variables Graph Variables Float Variables

- Modeling in CP
- Global constraints (declaration)
- Notions of local consistency
- Global constraints (operational: filtering algorithms)
- Search
- Set variables
- Symmetry breaking

Set Variables Graph Variables Float Variables

Global variables: complex variable types representing combinatorial structures in which problems find their most natural formulation

Eg: sets, multisets, strings, functions, graphs bin packing, set partitioning, mapping problems

We will see:

- Set variables
- Graph variables

Outline

Set Variables Graph Variables Float Variables

1. Set Variables

2. Graph Variables

3. Float Variables

- A finite-domain integer variable takes values from a finite set of integers.
- ► A finite-domain set variable takes values from the power set of a finite set of integers.

```
Eg.:
```

```
domain of x is the set of subsets of \{1, 2, 3\}:
```

 $\{\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

Finite-Set Variables

Recall the shift-assignment problem

We have a lower and an upper bound on the number of shifts that each worker is to staff (symmetric cardinality constraint)

- ▶ one variable for each worker that takes as value the set of shifts covererd by the worker. ~→ exponential number of values
- set variables with domain D(x) = [lb(x), ub(x)]
 D(x) consists of only two sets:
 - *lb*(x) mandatory elements
 - $ub(x) \setminus lb(x)$ of possible elements

The value assigned to x should be a set s(x) such that $lb(x) \subseteq s(x) \subseteq ub(x)$

In practice good to keep dual views with channelling

Finite-Set Variables

Example:

domain of x is the set of subsets of $\{1, 2, 3\}$:

```
\{\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
```

can be represented in space-efficient way by:

 $[\{\}..\{1,2,3\}]$

The representation is however an approximation!

Example:

```
domain of x is the set of subsets of \{1, 2, 3\}:
```

 $\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}$

cannot be captured exactly by an interval. The closest interval would be still:

 $[\{\}..\{1,2,3\}]$

 \rightsquigarrow we store additionally cardinality bounds: #[i..j]

Set Variables

Definition

set variable is a variable with domain D(x) = [lb(x), ub(x)]D(x) consists of only two sets:

- Ib(x) mandatory elements (intersection of all subsets)
- $ub(x) \setminus lb(x)$ of possible elements (union of all subsets)

The value assigned to x must be a set s(x) such that $lb \subseteq s(x) \subseteq ub(x)$

We are not interested in domain consistency but in bound consistency:

Enforcing bound consistency

A bound consistency for a constraint C defined on a set variable \times requires that we:

- ▶ Remove a value v from ub(x) if there is no solution to C in which $v \in s(x)$.
- ▶ Include a value $v \in ub(x)$ in lb(x) if in all solutions to C, $v \in s(x)$.

SetVar A(home, 0, 1, 0, 5, 3, 3); cout << A: {0,1}..{0..5}#(3) // prints a set variable</pre>

```
A.glbSize(); 2 // num. of elements in the greatest lower bound
A.glbMin(); 0 // minimum element of greatest lower bound
A.glbMax(); 1 // maximum of greatest lower bound
for (SetVarGlbValues i(x); i(); ++i) cout << i.val() << ' '; // values of glb
for (SetVarGlbRanges i(x); i(); ++i) cout << i.min() << ".." << i.max();
```

```
A.lubSize(): 6 // num. of elements in the least upper bound
A.lubMin(): 0 // minimum element of least upper bound
A.lubMax(): 5 // maximum element of least upper bound
for (SetVarLubValues i(x); i(); ++i) cout << i.val() << ' ';
for (SetVarLubRanges i(x); i(); ++i) cout << i.min() << ".." << i.max();</pre>
```

```
A.unknownSize(): 4 // num. of unknown elements (elements in lub but not in glb)
for (SetVarUnknownValues i(x); i(); ++i) cout << i.val() << ' ';
for (SetVarUnknownRanges i(x); i(); ++i) cout << i.min() << "..." <<i.max();
```

A.cardMin(): 3 // cardinality minimum A.cardMax(): 3 // cardinality maximum

SetVar(home, IntSet glb, int lubMin, int lubMax, int cardMin=MIN, int cardMax=MAX)

SetVar A(home, IntSet(), 0, 5, 0, 4)

```
cout << A;
A.glbSize(): 0 // num. of elements in the greatest lower bound
A.glbMin(): -1073741823 // minimum element of greatest lower bound
A.glbMax(): 1073741823 // maximum of greatest lower bound
A.lubSize(): 6 // num. of elements in the least upper bound
A.lubMin(): 0 // minimum element of least upper bound
A.lubMax(): 5 // maximum element of least upper bound
A.lubMax(): 5 // num. of unknown elements (elements in lub but not in glb)
A.cardMin(): 0 // cardinality minimum
A.cardMax(): 4 // cardinality maximum
```

SetVar(home, int glbMin, int glbMax, IntSet lub, int cardMin=MIN, int cardMax=MAX)

A.SetVar(1, 3, IntSet({ {1,4}, {8,12} }), 2, 4)

cout << A; A.glbSize(A): 3 // num. of elements in the greatest lower bound A.glbMin(A): 1 // minimum element of greatest lower bound A.glbMax(A): 3 // maximum of greatest lower bound

A.lubSize(A): 9 // nuA. of elements in the least upper bound A.lubMin(A): 1 // minimum element of least upper bound A.lubMax(A): 12 // maximum element of least upper bound

// A.unknownValues(A): [4, 8, 9, 10, 11, 12]
A.unknownSize)(A): 6 // num. of unknown elements (elements in lub but not in glb)
// A.unknownRanges(A): [(4, 4), (8, 12)]

A.cardMin(A): 3 // cardinality minimum A.cardMax(A): 4 // cardinality maximum

Social Golfers Problem

Find a schedule for a golf tournament:

- ► *g* · *s* golfers,
- who want to play a tournament in g groups of s golfers over w weeks,
- such that no two golfers play against each other more than once during the tournament.

A solution for the instance w = 4, g = 3, s = 3(players are numbered from 0 to 8)

	Group 0		Group 1			Group 2			
Week 0	0	1	2	3	4	5	6	7	8
Week 1	0	3	6	1	4	7	2	5	8
Week 2	0	4	8	1	5	6	2	3	7
Week 3	0	5	7	1	3	8	2	4	6

Model

```
w = 4;
g = 3:
s = 3:
golfers = g * s;
Golfer = range(golfers)
m=space()
assign = m.intvars(len(Golfer)*w, intset(range(g)))
assignM = Matrix(len(Golfer), w, assign)
# C1: Each group has exactly groupSize players
for gr in range(g):
  for wk in range(w):
    tmp=m. boolvars (golfers)
    for gl in Golfer:
      m.rel(assignM[gl,wk], IRT EQ, gr, tmp[gl])
    m. linear (tmp, IRT EQ, s)
c = []
for i in range(g):
  c.append(intset(s,s))
for wk in range(w):
  m.count(assignM.col(wk), c, ICL DOM)
# C2: Each pair of players only meets once
for g1,g2 in combinations(Golfer, 2):
  a=m. boolvars (w)
  for wk1 in range(w):
    m. rel (assign M [g1, wk1], IRT EQ, assign M [g2, wk1], a [wk1])
  m. linear (a. IRT EQ.1)
m. branch (assign , INT VAR SIZE MIN, INT VAL MIN)
```

Array of set variables:

```
SetVarArray(home, int N, ...)
SetVarArray groups(g*w, IntSet(), 0, g*s-1, s, s)
```

size $g \cdot w$, where each group can contain the players $[0..g \cdot s - 1]$ and has cardinality s

int w = 4; int g = 3; int s = 3; int golfers = g * s; SetVarArray groups(g*w, IntSet(), 0, g*s-1, s, s)

Constraints on FS variables

Set Variables Graph Variables Float Variables

dom(home, x, SRT_SUB, 1, 10); dom(home, x, SRT_SUP, 1, 3); dom(home, y, SRT_DISJ, IntSet(4, 6));

cardinality(home, x, 3, 5);

Constraints on FS variables Relation constraints

Set Variables Graph Variables Float Variables

rel(home, x, SRT_SUB, y)

rel(home, x, IRT_GR, y)

Constraints on FS variables Set operations

Set Variables Graph Variables Float Variables

rel(x, SOT_UNION, y, SRT_EQ, z)

rel(SOT_UNION, x, y)

Constraints on FS variables

element(home, x, y, z)

```
for an array of set variables or constants x,
an integer variable y,
and a set variable z.
```

It constrains z to be the element of array x at index y (where the index starts at 0).

Example

 $\texttt{element}([\{\{1,2,3\},\{2,3\},\{3,4\}\},\{\{2,3\},\{2\}\},\{\{1,4\},\{3,4\},\{3\}\}],\ 3,\ z)$

```
=> z = \{\{1,4\},\{3,4\},\{3\}\}
```

bounds the minimum and maximum number of occurrences of an element in an array of set variables:

 $\forall v \in U : I_v \leq |\mathcal{S}_v| \leq u_v$

where S_v is the set of set variables that contain the element v, i.e., $S_v = \{s \in S : v \in s\}$

(not present in gecode)

Constraints on FS variables Set Global Cardinality

Set Variables Graph Variables Float Variables

Bessiere et al. [2004]

	$\forall i < j \ldots$				
$\forall k \dots$	$ X_i \cap X_j = 0$	$ X_i \cap X_j \le k$	$ X_i \cap X_j \ge k$	$ X_i \cap X_j = k$	
	Disjoint	Intersect<	$Intersect_{\geq}$	Intersect_	
-	polynomial	polynomial	polynomial	NP-hard	
	decomposable	decomposable	decomposable	$not\ decomposable$	
	NEDisjoint	NEIntersect<	NEIntersect>	FCIntersect=	
$ X_k > 0$	polynomial	polynomial –	polynomial	NP-hard	
	$not\ decomposable$	decomposable	decomposable	$not\ decomposable$	
	FCDisjoint	FCIntersect<	FCIntersect>	NEIntersect_	
$ X_{k} = m_{k}$	poly on sets, NP-hard on multisets	NP-hard -	NP-hard	NP-hard	
	not decomposable	$ not\ decomposable $	$not\ decomposable$	$not\ decomposable$	

Table 1. Intersection × Cardinality.

Table 2. Partition + Intersection × Cardinality.

	$\bigcup_i X_i = X \land \forall i < j \ldots$					
$\forall k \ldots$	$ X_i \cap X_j = 0$	$ X_i \cap X_j \le k$	$ X_i \cap X_j \ge k$	$ X_i \cap X_j = k$		
-	Partition: polynomial	?	?	?		
	decomposable					
$ X_k > 0$	NEPartition: polynomial	?	?	?		
	$not\ decomposable$					
	FCPartition					
$ X_{k} = m_{k}$	polynomial on sets, NP-hard on multisets	?	?	?		
	$not\ decomposable$					

Constraints on FS variables

Constraints connecting set and integer variables

the integer variable y is equal to the cardinality of the set variable x.

```
cardinality(home, x, y);
```

Minimal and maximal elements of a set: int var y is minimum of set var x

min(x, y);

Weighted sets: assigns a weight to each possible element of a set variable x, and then constrains an integer variable y to be the sum of the weights of the elements of x

int e[6] = {1, 3, 4, 5, 7, 9}; int w[6] = {-1, 4, 1, 1, 3, 3} weights(home, e, w, x, y)

enforces that x is a subset of $\{1, 3, 4, 5, 7, 9\}$ (the set of elements), and that y is the sum of the weights of the elements in x, where the weight of the element 1 would be -1, the weight of 3 would be 4 and so on. Eg. Assigning x to the set $\{3, 7, 9\}$ would therefore result in y be set to 4 + 3 + 3 = 10

Constraints on FS variables Channeling constraints

Set Variables Graph Variables Float Variables

an array of Boolean variables X set variable S

channel(home, X, S)

 $X_i = 1 \iff i \in S \quad 0 \le i < |X|$

Example

 $S = \{1, 2\}$ X = [1, 1, 0]

Constraints on FS variables

Set Variables Graph Variables Float Variables

Channeling constraints

X an array of integer variables, SA an array of set variables

channel(home, X, SA)

$$X_i = j \iff i \in SA_j \quad 0 \le i, j < |X|$$

$$SA_i = s \iff \forall j \in s : X_j = i$$

Example

SA = [{1,2},{3}] X = [1,1,2]

Constraints on FS variables

An array of integer variables \vec{x} a set variable *S*:

rel(home, SOT_UNION, x, S)

```
constrains S to be the set \{x_0, \ldots, x_{|x|-1}\}
```

```
channelSorted(home, x, S);
```

constrains S to be the set $\{x_0, \ldots, x_{|x|-1}\}$, and the integer variables in \vec{x} to be sorted in increasing order ($x_i < x_{i+1}$ for $0 \le i < |x|$)

Example

rel(home, SOT_UNION, [3,6,2,1], {1,2,3,6}) channelSorted(home, [1,2,3,6], {1,2,3,6})

Constraints on FS variables Channeling constraints

 SA_1 and SA_2 two arrays of set variables

channel(home, SA1, SA2)

 $SA_1[i] = s \iff \forall j \in s : i \in SA_2[j]$

 $\begin{array}{ll} SA_1[i] = & \{j \mid SA_2[j] \text{ contains } i\} \\ SA_2[j] = & \{i \mid SA_1[i] \text{ contains } j\} \end{array}$

Example

SA1 = [{1,2},{3},{1,2}] SA2 = [{1,3},{1,3},{2}]

Constraints on FS variables

set variable *S*:

convex(home, S)

The convex hull of a set S is the smallest convex set containing S

convex(home, S1, S2)

enforces that the set variable S_2 is the convex hull of the set variable S_1 .

Example

```
S={{1,2,5,6,7},{2,3,4},{3,5}} convex(S)={2,3,4}
convex({1,2,5,6,7},{1,2,3,4,5,6,7})
```

Constraints on FS variables Sequence constraints

enforce an order among an array of set variables x

sequence(home,x)

sets x being pairwise disjoint, and furthermore $\max(x_i) < \min(x_{i+1})$ for all $0 \le i < |x| - 1$

```
sequence(home, x, y)
```

additionally constrains the set variable y to be the union of the x.

Constraints on FS variables

Value precedence constraints

enforce that a value precedes another value in an array of set variables. x is an array of set variables and both s and t are integers,

precede(home, x, s, t)

if there exists j ($0 \le j < |x|$) such that $s \notin x_j$ and $t \in x_j$, then there must exist i with i < j such that $s \in x_i$ and $t \notin x_i$

Social golfers Model with set variables

```
w = 4:
g = 3;
s = 3:
golfers = g * s;
Golfer = range (golfers)
m=space()
groups = m. setvars (g*w, intset(), 0, g*s-1, s, s)
schedule = Matrix (w, g, groups) \# is the set of group i in week j
# For each week, the union of all groups must be disjoint and contain all players
all Players = m. setvar (0, g*s-1, 0, g*s-1)
for wk in range(w):
 m. rel (SOT DUNION, schedule, row (wk), all Players)
# intersection between groups is at most 1
z=m.setvars(g*w*(g*w-1)/2, intset(), 0, g*s-1, 0, s)
I = 0
for i, j in combinations(range(g*w),2):
  m. rel(groups[i], SOT INTER, groups[j], SRT EQ, z[l]);
  m. cardinality (z[|]. 0. 1)
  +=1
m.dom(groups[0],SRT EQ, intset(0,2))
m. branch (groups, SET VAR MIN MIN, SET VAL MIN INC);
```

Set Domain representation

• A finite integer set V can be represented by its characteristic function χ_V :

 $\chi_V : \mathbb{Z} \mapsto \{0, 1\}$ where $\chi_v(i) = 1$ iff $i \in V$

hence we can use a set of Boolean variables v_i to represent the set V, which correspond to the propositions $v_i \iff i \in V$

Set bounds propagation is equivalent to performing domain propagation in a naive way on this Boolean representation

Sets of sets: disjunction of characteristic functions

 $\chi_{\mathcal{V}}(i) \iff \bigvee_{V \in \mathcal{V}} \chi_{V}(i)$

- Consider the domain {{}, {1,2}, {2,3}}
- Introduce propositional variables x₁, x₂, x₃
- Represent single variable domain as

 $(\neg x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_2 \land \neg x_3) \lor (\neg x_1 \land x_2 \land x_3))$

- Represent all variable domains as conjunction
- Efficient datastructure: ROBDDs

ROBDD

A Reduced Ordered Binary Decision Diagram (ROBDD) is a compact data structure:

a canonical function representation up to reordering, which permits an efficient implementation of many Boolean function operations.

Implementation in Gecode

 Set variables in Gecode do not use Reduced Ordered Binary Decision Diagrams (ROBDDs).

- A prototype alternative implementation using ROBDDs proved to be a lot slower in many cases (and quite painful to maintain because of additional dependencies).
- The current implementation uses range lists (i.e. linked lists of contiguous, sorted, non-overlapping ranges) to store a lower and an upper bound, together with a lower and upper bound on the cardinality.

Guido Tack

Outline

Set Variables **Graph Variables** Float Variables

1. Set Variables

2. Graph Variables

3. Float Variables

Definition

A graph variable is simply two set variables V and E, with an inherent constraint $E \subseteq V \times V$.

Hence, the domain D(G) = [lb(G), ub(G)] of a graph variable G consists of:

- mandatory vertices and edges lb(G) (the lower bound graph) and
- ▶ possible vertices and edges $ub(G) \setminus lb(G)$ (the upper bound graph).

The value assigned to the variable G must be a subgraph of ub(G) and a super graph of the lb(G).

Graph variables are convinient for possiblity of efficient filtering algorithms

Example:

```
Subgraph(G,S)
```

specifies that S is a subgraph of G. Computing bound consistency for the subgraph constraint means the following:

- 1. If lb(S) is not a subgraph of ub(G), the constraint has no solution (consistency check).
- 2. For each $e \in ub(G) \cap lb(S)$, include e in lb(G).
- 3. For each $e \in ub(S) \setminus ub(G)$, remove e from ub(S).

Constraints on Graph Variables

- Tree constraint: enforces the partitioning of a digraph into a set of vertex-disjoint anti-arborescences. (see, [Beldiceanu2005])
- ▶ Weghted Spanning Tree constraint: given a weighted undirected graph G = (V, E) and a weight K, the constraint enforces that T is a spanning tree of cost at most K (see, [Regin2008,2010] and its application to the TSP [Rousseau2010]).
- ▶ Shorter Path constraint: given a weighted directed graph G = (N, A) and a weight K, the constraint specifies that P is a subset of G, corresponding to a path of cost at most K. (see, [Sellmann2003, Gellermann2005])
- ▶ (Weighted) Clique Constraint, (see, [Regin2003]).

Outline

Set Variables Graph Variables Float Variables

1. Set Variables

2. Graph Variables

3. Float Variables

Float Variables

- ► Floating point values represented as a closed interval of two floating point numbers (short, float number): closed interval [a..b] to represent all real numbers n such that a ≤ n ≤ b.
- correct computations: no possible real number is ever excluded due to rounding ~> Interval arithmetic
- The float number type FloatNum defined as double
- FloatVar x; x.min(); x.max(); x.tight() (a = b assigned)
- predefined values pi_half(), pi(), pi_twice()
- ▶ x<y ~→ x.max()<y.min()</pre>

function	meaning	default
max(x,y)	maximum max(x,y)	1
min(x,y)	minimum max(x, y)	1
abs(x)	absolute value x	1
sqrt(x)	square root \sqrt{x}	1
sqr(x)	square x ²	1
pow(x,n)	n-th power x ⁿ	1
nroot(x,n)	n-th root $\sqrt[n]{x}$	1
fmod(x,y)	remainder of x/y	
exp(x)	exponential exp(x)	
log(x)	natural logarithm log(x)	
sin(x)	sine sin(x)	
cos(x)	cosine cos(x)	
tan(x)	tangent tan(x)	
asin(x)	arcsine arcsin(x)	
acos(x)	arccosine arccos(x)	
atan(x)	arctangent arctan(x)	
sinh(x)	hyperbolic sine sinh(x)	
cosh(x)	hyperbolic cosine cosh(x)	
tanh(x)	hyperbolic tangent tanh(x)	
asinh(x)	hyperbolic arcsine arcsinh(x)	
acosh(x)	hyperbolic arccosine arccosh(x)	
atanh(x)	hyperbolic arctangent arctanh(x)	

Non default functions need recompilation

Variable Creation

FloatVar x(home, -1.0, 1.0); // creation
FloatVar y(x); // call to copy constructor, refer to variable x
FloatVar z; // default constructor, no variable implemented
z=y; // copy, z refer to x
cout<<x;</pre>

The variables x, y, and z all refer to the same float variable implementation.

Constraints

Set Variables Graph Variables Float Variables

dom(home, x, -2.0, 12.0); dom(home, x, d); rel(home, x, FRT_LE, y); rel(home, x, FRT_LQ, 4.0); rel(home, x, FRT_GR, 7.0); min(home, x, y); linear(home, a, x, FRT_GR, c); channel(home, x, y);

Interval Arithmetics

Whereas classical arithmetic defines operations on individual numbers, interval arithmetic defines a set of operations on intervals: For intervals on integers:

 $T \cdot S = \{x \mid \text{ there is some } y \text{ in } T, \text{ and some } z \text{ in } S, \text{ such that } x = y \cdot z\}.$

For intervals on real numbers, the arithmetic is an extension of real arithmetic.

Let two intervals [a, b] and [c, d] be subsets of the real line $(-\infty, +\infty)$:

Definition

If \ast is one of the symbols $+,-,\cdot,/$ for the arithmetic operations on intervals, then

 $[a, b] * [c, d] = \{x * y \mid a \le x \le b, c \le y \le d\}$

except that [a, b]/[c, d] remains undefined if $0 \in [c, d]$.

From the definition:

• [a, b] + [c, d] = [a + c, b + d],

•
$$[a, b] - [c, d] = [a - d, b - c]$$

- $\blacktriangleright [a, b] \times [c, d] = [\min(a \times c, a \times d, b \times c, b \times d), \max(a \times c, a \times d, b \times c, b \times d)],$
- [a, b]/[c, d] = [min(a/c, a/d, b/c, b/d), max(a/c, a/d, b/c, b/d)] when
 0 is not in [c, d].

The addition and multiplication operations are commutative, associative and sub-distributive: the set X(Y + Z) is a subset of XY + XZ.

See [Apt, 2003, sc 6.6]

References

- Apt K.R. (2003). **Principles of Constraint Programming**. Cambridge University Press.
- Bessiere C., Hebrard E., Hnich B., and Walsh T. (2004). Disjoint, partition and intersection constraints for set and multiset variables. In *Principles and Practice* of *Constraint Programming – CP 2004*, edited by M. Wallace, vol. 3258 of Lecture Notes in Computer Science, pp. 138–152. Springer Berlin / Heidelberg.
- Gervet C. (2006). **Constraints over structured domains**. In *Handbook of Constraint Programming*, edited by F. Rossi, P. van Beek, and T. Walsh, chap. 17, pp. 329–376. Elsevier.
- van Hoeve W. and Katriel I. (2006). **Global constraints**. In *Handbook of Constraint Programming*, chap. 6. Elsevier.