DM841

Discrete Optimization

Part 1l
Lecture 4
Introduction to Gecode

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Christian Schulte, KTH Royal Institute of Technology]

Constraint Languages

Outline Sonstra

1. Constraint Languages

2. Gecode

Resume

» Modelling in CP

» Examples: graph coloring, Sudoku, crosswords, cryptoarithmetic

» Overview on solving constraint satisfaction problems
» search = backtracking + branching
» propagate + filtering
> level of consistency (arc/generalized + value/bound/domain)

Constraint Programming:
representation (modeling language) + reasoning (search + propagation)

Constraint Languages

Outline Sonarrs

1. Constraint Languages

Constraint Languages

Constraint Programming Systems

Expressiveness language stream
(modeling)
+
(efficient solvers)
Algorithm stream

CP systems typically include

» general purpose algorithms for constraint propagation
(arc consistency on finite domains)

» built-in constraint propagation for various constraints
(eg, linear, Boolean, global constraints)

» built-in for constructing various forms of search

Constraint Languages

Logic Programming

Logic programming is the use of mathematical logic for computer
programming.

First-order logic is used as a purely declarative representation language, and a
theorem-prover or model-generator is used as the problem-solver.

Logic programming supports the notion of logical variables
» Syntax — Language
> Alphabet
» Well-formed Expressions
Eg,4X+3Y=10;2X-Y =0
» Semantics — Meaning

> Interpretation
> Logical Consequence

» Calculi — Derivation

> Inference Rule
> Transition System

Constraint Languages

Logic Programming

Example: Prolog
A logic program is a set of axioms, or rules, defining relationships
between objects.

A computation of a logic program is a deduction of consequences of
the program.

A program defines a set of consequences, which is its meaning.

Sterling and Shapiro: The Art of Prolog, Page 1.
To deal with the other constraints one has to add other constraint solvers to
the language. This led to Constraint Logic Programming

Constraint Languages

Prolog Approach Sereds

> Prolog Il till Prolog IV [Colmerauer, 1990]

» CHIP V5 [Dincbas, 1988] http://www.cosytec.com (commercial)
» CLP [Van Hentenryck, 1989]

» Ciao Prolog (Free, GPL)

» GNU Prolog (Free, GPL)

» SICStus Prolog

» ECLiPSe [Wallace, Novello, Schimpf, 1997] http://eclipse-clp.org/
(Open Source)

» Mozart programming system based on Oz language (incorporates
concurrent constraint programming) http://www.mozart-oz.org/
[Smolka, 1995]

http://www.cosytec.com
http://eclipse-clp.org/
http://www.mozart-oz.org/

Constraint Languages

Other Approaches cecede

Libraries:
Constraints are modeled as objects and are manipulated by means of special
methods provided by the given class.

>

>

CHOCO (free) http://choco.sourceforge.net/
Kaolog (commercial) http://www.koalog.com/php/index.php
ILOG CP Optimizer www.cpoptimizer.ilog.com (ILOG, commercial)

Gecode (free) www.gecode.org
C++, Programming interfaces Java and MiniZinc

G12 Project
http://www.nicta.com.au/research/projects/constraint_
programming_platform

www.cpoptimizer.ilog.com
www.gecode.org
http://www.nicta.com.au/research/projects/constraint_programming_platform
http://www.nicta.com.au/research/projects/constraint_programming_platform

Constraint Languages

Other Approaches cecede

Modelling languages:

» OPL [Van Hentenryck, 1999] ILOG CP Optimizer
www . cpoptimizer.ilog.com (ILOG, commercial)

> MiniZinc [] (open source, works for various systems, ECLiPSe, Geocode)
» Comet

» AMPL

10

www.cpoptimizer.ilog.com

» Catalogue of Constraint Programming Tools:
http://openjvm.jvmhost.net/CPSolvers/

» Workshop "CPSOLVERS-2013"
http://cp2013.a4cp.org/node/99

Constraint Languages
Gecode

11

http://openjvm.jvmhost.net/CPSolvers/
http://cp2013.a4cp.org/node/99

Constraint Languages

CP Languages

Greater expressive power than mathematical programming
» constraints involving disjunction can be represented directly

> constraints can be encapsulated (as predicates) and used in the
definition of further constrains

However, CP models can often be translated into MIP model by
> eliminating disjunctions in favor of auxiliary Boolean variables

» unfolding predicates into their definitions

12

CP Languages

» Fundamental difference to LP
» language has structure (global constraints)

» different solvers support different constraints
» In its infancy

» Key questions:
» what level of abstraction?
> solving approach independent: LP, CP, ...?

> how to map to different systems?

> Modeling is very difficult for CP

> requires lots of knowledge and tinkering

Constraint Languages

13

Summary

v

Model your problem via Constraint Satisfaction Problem

v

Declare Constraints + Program Search

v

Constraint Propagation

v

Languages

Constraint Languages

14

Outline

2. Gecode

Constraint Languages
Gecode

15

>

Christian Schulte
KTH Royal Institute of Technology, Sweden

Gecode

an open constraint solving library

Gecode People

* Core team
Christian Schulte, Guido Tack, Mikael Z. Lagerkvist.

* Code

contributions: Christopher Mears, David Rijsman, Denys Duchier, Filip Konvicka, Gabor
Szokoli, Gabriel Hjort Blindell, Gregory Crosswhite, Hakan Kjellerstrand, Joseph Scott,
Lubomir Moric, Patrick Pekczynski, Raphael Reischuk, Stefano Gualandi, Tias Guns,
Vincent Barichard.

fixes: Alexander Samoilov, David Rijsman, Geoffrey Chu, Grégoire Dooms, Gustavo
Gutierrez, Olof Sivertsson, Zandra Norman.

September 2013

Q
=
=
=
s}
@A
c
K]
=1
1
<
o
)
°
9
s}
[}
O

* Documentation
contributions: Christopher Mears.
fixes: Seyed Hosein Attarzadeh Niaki, Vincent Barichard, Pavel Bochman, Felix Brandt,
Markus Bohm, Roberto Castafieda Lozano, Gregory Crosswhite, Pierre Flener, Gustavo
Gutierrez, Gabriel Hjort Blindell, Sverker Janson, Andreas Karlsson, Hakan Kjellerstrand,

Chris Mears, Benjamin Negrevergne, Flutra Osmani, Max Ostrowski, David Rijsman, Dan
Scott, Kish Shen.

Gecode

Generic Constraint Development Environment

* open
easy interfacing to other systems

supports programming of: constraints, branching strategies, search
engines, variable domains

September 2013

* comprehensive

constraints over integers, Booleans, sets, and floats
different propagation strength, half and full reification, ...

advanced branching heuristics (accumulated failure count, activity)

Q
=
=
=
s}
@A
c
K]
=1
1
<
o
)
°
9
s}
[}
O

many search engines (parallel, interactive graphical, restarts)
automatic symmetry breaking (LDSB)

no-goods from restarts

MiniZinc support

Gecode

Generic Constraint Development Environment

* efficient
all gold medals in all categories at all MiniZinc Challenges
* documented

tutorial (> 500 pages) and reference documentation

* free

MIT license, listed as free software by FSF
* portable

implemented in C~ that carefully follows the C+ standard
* parallel

exploits multiple cores of today's hardware for search
* tested

some 50000 test cases, coverage close to 100%

September 2013

Q
=
=
=
s}
@A
c
K]
=1
1
<
o
)
°
9
s}
[}
O

)
P
o
I
)
o
£
)
3
=%
o
%)
o
=
=
=
5]
a
=
©
=]
7]

Gecode, Chri

SOME BASIC FACTS

o
(%3]
—

Architecture

modeling layer

integers floats search Gist
g engines interactive search

tool

Gecode kernel

* Small domain-independent kernel
* Modules
© per variable type: variables, constraint, branchings, ...
© search, FlatZinc support, ...
* Modeling layer
© arithmetic, set, Boolean operators; regular expressions; matrices, ...
= All APIs are user-level and documented (tutorial + reference)

Openness

* MIT license permits commercial, closed-source use

motivation: public funding, focus on research %

not a reason: attitude, politics, dogmatism %
* More than a license 5

license restricts what users may do

code and documentation restrict what users cando

* Modular, structured, documented, readable
complete tutorial and reference documentation
new ideas from Gecode available as scientific publications

Q
=
=
=
s}
@A
c
K]
=1
1
<
o
)
°
9
s}
[}
O

° Equal rights: Gecode users are first-class citizens
you can do what we can do: APIs
you can know what we know: documentation
on every level of abstraction

Constraints in Gecode

* Constraint families
arithmetics, Boolean, ordering,

alldifferent, count (global cardinality, ...), element, scheduling, table
and regular, sorted, sequence, circuit, channel, bin-packing, lex,
geometrical packing, nvalue, lex, value precedence, ...

* Families
many different variants and different propagation strength

All global constraints from MiniZinc have a native
implementation

* Gecode S Global Constraint Catalogue: > 70 constraints

abs_value, all_equal, alldifferent, alldifferent_cst, among, among_seq, among_var, and, arith, atleast, atmost,
bin_packing, bin_packing_capa, circuit, clause_and, clause_or, count, counts, cumulative, cumulatives,
decreasing, diffn, disjunctive, domain, domain_constraint, elem, element, element_matrix, eq, eq_set,
equivalent, exactly, geq, global_cardinality, gt, imply, in, in_interval, in_intervals, in_relation, in_set, increasing,
int_value_precede, int_value_precede_chain, inverse, inverse_offset, leq, lex, lex_greater, lex_greatereq,
lex_less, lex_lesseq, link_set_to_booleans, It, maximum, minimum, nand, neq, nor, not_all_equal, not_in, nvalue,
nvalues, or, roots, scalar_product, set_value_precede, sort, sort_permutation, strictly_decreasing,
strictly_increasing, sum_ctr, sum_set, xor

September 2013

Q
=
=
=
s}
@A
c
K]
=1
1
<
o
)
°
9
s}
[}
O

History

* 2002)
development started S

- 1.0.0 43 kloc, 21 klod :_
December 2005 &

= 2.0.0 77 kloc, 41 klod E
November 2007 34 releases g

 3.0.0 81 kloc, 41 klod :
March 2009 g

- 4.0.0 164 kloc, 69 klod ©
March 2013

* 4.2.0 (current) 168 kloc, 71 klod

July 2013

Tutorial Documentation

* 2002 .
development started %'

- 1.0.0 43 kloc, 21 klod :
December 2005 E

= 2.0.0 77 kloc, 41 klod E
November 2007 2

* 3.0.0 ’ Modeling with Gecode (98 pages) 1 klod ’é
March 2009 g

- 4.0.0 164 kloc, 69 klod o
March 2013

* 4.2.0 (current) ’ Modeling & Programming with Gecode (522 pages) ‘
July 2013 [10]

Future

* Large neighborhood search and other meta-heuristics
contribution expected

* Simple temporal networks for scheduling
contribution expected

September 2013

* More expressive modeling layer on top of libmzn
* Grammar constraints

contribution expected

* Propagator groups

Q
=
=
=
s}
@A
c
K]
=1
1
<
o
)
°
9
s}
[}
O

* Contributions anyone?

o)
=
(Y

—

Deployment & Distribution

* Open source # Linux only

Gecode is native citizen of: Linux, Mac, Windows

* High-quality
extensive test infrastructure (around 16% of code base)

Downloads from Gecode webpage
software: between 25 to 125 per day (total > 40000)
documentation: between 50 to 300 per day

* Included in
Debian, Ubuntu, Fedora, OpenSUSE, Gentoo, FreeBSD, ...

September 2013

Q
=
=
=
s}
@A
c
K]
=1
1
<
o
)
°
9
s}
[}
O

—
=
(o]

-

Integration & Standardization

* Why C+ as implementation language?
good compromise between portability and efficiency
good for interfacing
well demonstrated

September 2013

* Integration with XYZ...
Gecode empowers users to do it
no “Jack of all trades, master of none”
well demonstrated

Q
=
=
=
s}
@A
c
K]
=1
1
<
o
)
°
9
s}
[}
O

* Standardization
any user can build an interface to whatever standard...
systems are the wrong level of abstraction for standardization
MiniZinc and AMPL are de-facto standards

—
=
©

-

Modeling & Programming

Gecode, Christian Schulte

Constraint Programming with

Gecode

Overview

Program model as script
declare variables
post constraints (creates propagators)
define branching

Solve script
basic search strategy
Gist: interactive visual search

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 16

Program Model as Script

Script: Overview

Script is class inheriting from class Space
members store variables regarded as solution
Script constructor
initialize variables
post propagators for constraints
define branching
Copy constructor and copy function
copy a Script object during search
Exploration takes Script object as input
returns object representing solution
Main function
invokes search engine

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 18

Script for SMM: Structure

#include <gecode/int.hh>
#include <gecode/search.hh>

using namespace Gecode;

class SendMoreMoney : public Space {
protected:

IntVarArray 1; // Digits for the letters
public:

// Constructor for script

SendMoreMoney(void) .. { .. }

// Constructor for cloning

SendMoreMoney (bool share, SendMoreMoney& s) .. { ..

// Perform copying during cloning
virtual Space* copy(bool share) { .. }
// Print solution
void print(void) { .. }

s

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Script for SMM: Structure

#include <gecode/int.hh>
#include <gecode/sear” 4uay of integer variables

using namespace Gec stores solution

class SendMoreMoney : pubdic Space {
protected:

IntVarArray 1; // Digits for the letters
public:

// Constructor for script

SendMoreMoney(void) .. { .. }

// Constructor for cloning

SendMoreMoney (bool share, SendMoreMoney& s) .. { ..

// Perform copying during cloning
virtual Space* copy(bool share) { .. }
// Print solution
void print(void) { .. }

s

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Script for SMM: Structure

#include <gecode/int.hh>
#include <gecode/search.hh> o
constructor: initialize

using namespace Gecodej variables, post

constraints, define

class SendMoreMoney : pu. brEmehin
protected: 9

IntVarArray 1; // Digits f¢)the letters
public:

// Constructor for script

SendMoreMoney(void) .. { .. }

// Constructor for cloning

SendMoreMoney (bool share, SendMoreMoney& s) .. { ..

// Perform copying during cloning
virtual Space* copy(bool share) { .. }
// Print solution
void print(void) { .. }

s

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Script for SMM: Structure

#include <gecode/int.hh>
#include <gecode/search.hh>

using namespace Gecode;

class SendMoreMoney : public Space {
protected:

IntVarArray 1; // Digits for the letters
public:

// Constructor for script copy constructor and

SendMoreMoney(void) .. { .. } copy function
// Constructor for cloning

SendMoreMoney (bool share, SendMore-oney& s) .. { ..

// Perform copying during cloning
virtual Space* copy(bool share) { .. }
// Print solution
void print(void) { .. }

s

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

‘ Script for SMM: Constructor

SendMoreMoney(void) : 1(*this, 8, @, 9) {
Intvar s(1[e]), e(1[1]), n(1[2]), d(1[3]),
m(1[4]1), o(1[51), r(1[6]1), y(1[71);

// Post constraints

// Post branchings

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

23

‘ Script for SMM: Constructor

SendMoreMoney (void) : 1(*this, 8, 0, 9) {
Intvar s(1[@]), e(1[1]); n(1[2]), d(1[3]),
m(1[4]1), o(1[51), n"1[61), y(1[71);

// Post constraints

‘\J‘

// Post branchings B e
- ' variables ‘
[createdin this /\
_ script (space) \/

SN

24

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

‘ Script for SMM: Constructor

SendMoreMoney(void) : 1(*this, 8, @, 9) {
Intvar s(1[e]), e(1[1]), n(I[2]), d(1[3]),
m(1[4]), o(1[5]), r(1[6]), y(1[7]),

// Post constraints

// Post branchings g‘/ 8variables

S—__ o~

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

25

‘ Script for SMM: Constructor

SendMoreMoney(void) : 1(*this, 8, 0, 9) {
Intvar s(1[0]), e(1[1]), n(1[2]), d(1[3]),
m(1[4]), o(1[5]), r(1[6]), ¥(1[7D);

// Post constraints ./ B n

// Post branchings (take values

\ betweenOand9
} (- (digits) ‘

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 26

‘ Script for SMM: Constructor

SendMoreMoney(void) : 1(*this, 8, @, 9) {
Intvar s(1[e]), e(1[1]), n(1[2]), d(1[3]),
m(1[4]1), o(1[51), r(1[6]1), y(1[71);

// Post constraints

// Post branchings

@) P
} - referto variables 2
t— by their letters .~

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 27

Script for SMM: Constructor

SendMoreMoney(void) : 1(*this, 8, @, 9) {

Intvar s(1[@]), e(1[1]), n(1[2]), d(1[3]),
m(1[4]), o(1[51), r(1[6]), y(1[71);

// No leading zeros (IRT: integer relation type)

rel(*this, s, IRT_NQ, 0);

rel(*this, m, IRT_NQ, 0);

// All letters must take distinct digits

distinct(*this, 1);

// The linear equation must hold

// Branch over the letters

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 28

Posting Constraints

Defined in namespace Gecode

Check documentation for available
constraints

Take script reference as first argument
where is the propagator for the constraint to be posted!
script is a subclass of Space (computation space)

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 29

Linear Equations and Linear Constraints

Equations of the form
C1'X1 + + Cn'Xn= d

integer constants: c;and d
integer variables: X;

In Gecode specified by arrays
integers (IntArgs) C;
variables (IntvarArray, IntVarArgs) Xx;

Not only equations
IRT_EQ, IRT_NQ, IRT_LE, IRT_GR, IRT_LQ, IRT_GQ
equality, disequality, inequality (less, greater, less or equal, greater or
equal)

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 30

Script for SMM: Constructor

SendMoreMoney(void) : 1(*this, 8, @, 9) {

// The linear equation must hold

IntArgs c(4+4+5); IntVarArgs x(4+4+5);

c[0]=1000; c[1]=100; c[2]=10; c[3]=1;

x[@]=s; x[1]=e; x[2]=n; x[3]=d;

c[4]=1000; c[5]=100; c[6]=10; c[7]=1;

x[4]=m; x[5]=0; x[6]=r; x[7]=e;

c[8]=-10000; c[9]=-1000; c[10]=-100; c[11]=-10; c[12]=-1;
x[8]=m; x[9]=0; x[10]=n; x[11]=e; x[12]=y;
linear(*this, c, x, IRT_EQ, 9);

// Branch over the letters

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Linear Expressions

Other options for posting linear constraints
are available: minimodeling support

linear expressions

Boolean expressions

matrix classes

See the examples that come with Gecode

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 32

‘ Script for SMM: Constructor

#include <gecode/minimodel.hh>

SendMoreMoney(void) : 1(*this, 8, 0, 9) {

// The linear equation must hold
post(*this, 1000*s + 100*e + 10*n + d
+ 1000*m + 100*0 + 10*r + e
== 10000*m + 1000*0 + 100*n + 10*e + y);
// Branch over the letters

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

33

| Script for SMM: Constructor

SendMoreMoney(void) : 1(*this, 8, @, 9) {

// Branch over the letters
branch(*this, 1, INT_VAR_SIZE_MIN, INT_VAL_MIN);
}

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

34

Branching

Which variable to choose
given order INT_VAR_NONE
smallest size INT_VAR_SIZE_MIN
smallest minimum INT_VAR_MIN_MIN

How to branch: which value to choose
try smallest value INT_VAL_MIN
split (lower first) INT_VAL_SPLIT MIN

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 35

| Script for SMM: Copying

// Constructor for cloning

SendMoreMoney (bool share, SendMoreMoney& s) : Space(share, s) {
1.update(*this, share, s.1);

}

// Perform copying during cloning

virtual Space* copy(bool share) {
return new SendMoreMoney(share,*this);

}

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

36

| Script for SMM: Copying

// Constructor for cloning
SendMoreMoney (bool share, SendMoreMoney& s) : Space(share, s) {
l.update(*this, share, s.l1);

} e e~

// Perform copying during cloning— update all

virtual Space* copy(bool share) 3 variablesneeded .
return new SendMoreMoney(share,~w_for solution. -~

} —

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

37

Script for SMM: Copying

// Constructor for cloning

SendMoreMoney (bool share, SendMoreMoney& s) : Space(share, s) {
1.update(*this, share, s.1);

}

// Perform copying during cloning

virtual Space* copy(bool share) {
return new SendMoreMoney(share,*this);

}

create a new copy
of the space
during cloning

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

38

Copying

Required during exploration
before starting to guess: make copy
when guess is wrong: use copy
discussed later

Copy constructor and copy function needed
copy constructor is specific to script
updates (copies) variables in particular

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

39

Copy Constructor And Copy Function

Always same structure

Important!
must update the variables of a script!
if you forget: crash, boom, bang, ...

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 40

' Script for SMM: Print Function

// Print solution
void print(void) {
std::cout << 1 << std::endl;

}

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

41

Summary: Script

Variables
declare as members
initialize in constructor
update in copy constructor

Posting constraints
Create branching
Provide copy constructor and copy function

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

42

Solving Scripts

Available Search Engines

Returning solutions one by one for script
DFS depth-first search
BAB branch-and-bound
Restart, LDS

Interactive, visual search
Gist

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Main Method: First Solution

int main(int argc, char* argv[]) {
SendMoreMoney* m = new SendMoreMoney;
DFS<SendMoreMoney> e(m);
delete m;
if (SendMoreMoney* s = e.next()) {
s->print(); delete s;

return 0;

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

45

Main Method: Flrst Solutlon

N

create root

. spacefor)
y P .

\X_/sgarch U

int main(int argc, char*x&rgv[]) {

SendMoreMoney* m = new SendMoreMoney;
DFS<SendMoreMoney> e(m);
delete m;

if (SendMoreMoney* s = e.next()) {
s->print(); delete s;

return 0;

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

46

Main Method: First Solution

- > \

) create search ;Lx
- engine (takes N/

clone of m)
int main(int argc, char* ;?EVTT7\I

SendMoreMoney* m = new\’endMoreMoney,
DFS<SendMoreMoney> e(m);
delete m;

if (SendMoreMoney* s = e.next()) {
s->print(); delete s;

return 0;

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

47

Main Method: /Flrst Solutlon

root space not

. anylonger)
. anylonger

_Ee\eded U

int main(int argc, ch{)* argv[]) {

SendMoreMoney* m = new SendMoreMoney;
DFS<SendMoreMoney> e(m);
delete m; °

if (SendMoreMoney* s = e.next()) {
s->print(); delete s;

return 0;

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

48

Main Method: First Solution

Y >

‘ search first)}
int main(int argc, char* argvf”’r Sduqon?nd NS
SendMoreMoney* m = new SendMore)n@!ﬂ
DFS<SendMoreMoney> e(m); 7 Q
delete m; ©

if (SendMoreMoney* s = e.next()) {
s->print(); delete s;

return 0;

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Main Method: All Solutions

int main(int argc, char* argv[]) {
SendMoreMoney* m = new SendMoreMoney;
DFS<SendMoreMoney> e(m);
delete m;
while (SendMoreMoney* s = e.next()) {
s->print(); delete s;

return 0;

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Gecode Gist

A graphical tool for exploring the search tree
explore tree step by step
tree can be scaled
double-clicking node prints information: inspection
search for next solution, all solutions

Best to play a little bit by yourself

hide and unhide failed subtrees

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

Main Function: Gist

#include <gecode/gist.hh>

int main(int argc, char* argv[]) {
SendMoreMoney* m = new SendMoreMoney;
Gist::dfs(m);
delete m;
return 0;

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

‘ Gist Screenshot

© Gt

Fie Node Seerch Tools Hep

P

&5 B @a Oo

2010-03-25

1D2204-1.02, Christian Schulte, ICT, KTH

53

Best Solution Search

‘ Reminder: SMM++

= Find distinct digits for letters, such that

SEND
+ MOST
= MONEY

and MONEY maximal

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

55

Script for SMM++

Similar, please try it yourself at home

In the following, referred to by
SendMostMoney

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Solving SMM++: Order

Principle
for each solution found, constrain remaining search for better
solution

Implemented as additional method
virtual void constrain(const Space& b) {

}

Argument b refers to so far best solution

only take values from b
never mix variables!

Invoked on object to be constrained

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

Order for SMM++

virtual void constrain(const Space& _b) {
const SendMostMoney& b =
static_cast<const SendMostMoney&>(_b);

Intvar e(1[1]), n(1[2]), m(1[4]), o(1[5]), y(1[8]);

IntVar b_e(b.1[1]), b_n(b.1[2]), b_m(b.1[4]),
b_o(b.1[5]), b_y(b.1[8]);

int money = (10000*b_m.val()+1000*b_o.val()+100*b_n.val()+
10*b_e.val()+b_y.val());

rel. _o—-mmmm -
pest(*this, 1 me@emme@mwta@*mle*ew\ > \mcmey‘) H

2009-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 58

Main Method: All Solutions

int main(int argc, char* argv[]) {
SendMostMoney* m = new SendMostMoney;
BAB<SendMostMoney> e(m);
delete m;
while (SendMostMoney* s = e.next()) {
s->print(); delete s;

return 0;

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Main Function: Gist

#include <gecode/gist.hh>

int main(int argc, char* argv[]) {
SendMostMoney* m = new SendMostMoney;
Gist::bab(m);
delete m;
return 0;

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

60

Summary: Solving

Result-only search engines
DFS, BAB

Interactive search engine
Gist

Best solution search uses constrain-method for
posting constraint

Search engine independent of script and constrain-
method

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

‘ 8-Queens

Problem Statement

Place 8 queens on a chess board such that the
queens do not attack each other
Straightforward generalizations

place an arbitrary number: n Queens
place as closely together as possible

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 63

What Are the Variables?

Representation of position on board

First idea: two variables per queen

one for row

one for column

2-nvariables
Insight: on each column there will be a
queen!

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

64

Fewer Variables...

Have a variable for each column
value describes row for queen

nvariables
Variables: Xy -ees X7
where x; € {0, ..., 7}

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 65

Other Possibilities

For each field: number of queen
which queen is not interesting, so...
n? variables

For each field on board: is there a queen on
the field?

8x8 variables

variable has value 0: no queen
variable has value 1: queen

n? variables

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 66

Constraints: No Attack

not in same column
by choice of variables

not in same row
X #x; fori#j

not in same diagonal
Xi—I#X-] fori #j
Xi—j# X -0 fori #j

3-n-(n— 1) constraints

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Fewer Constraints...

Sufficient by symmetry
I <j instead of | #j

Constraints
X; # X fori <j
Xi—1# X -] fori<j
Xi—j# X -0 fori <j

3/2-n-(n— 1) constraints

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

68

Even Fewer Constraints

Not same row constraint
X; % X; fori <j
means: values for variables pairwise distinct

Constraints
distinct(xy, ..., X7)
Xi—I#X;-] fori <j
Xi—j# X -0 fori <j

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

69

Pushing it Further...

Yes, also diagonal constraints can be
captured by distinct constraints
see-assignment

distinct(x0, x1, .., X7)
distinct(x0-0, x1-1, ..., x7-7)
distinct(x0+0, x1+1, ..., x7+7)

2009-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

| Script: Variables

Queens(void) : q(*this,8,0,7) {

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

| Script: Constraints

Queens(void) : q(*this,8,0,7) {
distinct(*this, q);
for (int i=0; i<8; i++)
for (int j=i+1; j<8; j++) {
(| Post(*this, x[i]-i 1= x[3]-3);
pest(*this, x[1i]-j != x[j]-1);
}

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

72

Script: Branching
Queens(void) : q(*this,8,0,7) {
branch(*this, q,

INT_VAR_NONE,
INT_VAL_MIN);

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Good Branching?

Naive is not a good strategy for branching

Try the following (see assignment)
first fail
place queen as much in the middle of a row
place queen in knight move fashion

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

Summary 8 Queens

Variables
model should require few variables
good: already impose constraints

Constraints
do not post same constraint twice

try to find “big” constraints subsuming many small
constraints

more efficient

often, more propagation (to be discussed)

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

75

Grocery

Grocery

Kid goes to store and buys four items
Cashier: that makes $7.11

Kid: pays, about to leave store
Cashier: hold on, | multiplied!
let me add!

wow, sum is also $7.11
You: prices of the four items?

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

‘ Model

= Variables
= for each item A B,C D
= take values between {0, ..., 711}
= compute with cents: allows integers

= Constraints

= A+B+C+D=711 I]
= A*B*C*D=711*100 * 100 * 100

The unique solution (upon the symmetry breaking of slide 87) is:
A=120, B=125, C=150, D=316. I

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 78

Script

class Grocery : public Space {
protected:
IntVarArray abcd;

const int s = 711;

const int p = s * 100 * 100 * 100;
public:

Grocery(void) .. { .. }

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 79

Script: Variables

Grocery(void) : abcd(*this,4,0,711) {

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

80

Script: Sum

// Sum of all variables is s
linear(this, abcd, IRT _EQ, s);

IntVar a(abcd[0]), b(abcd[1]),
c(abcd[2]), d(abcd[3]);

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 81

Script: Product

IntVar tl1(*this,1,p);
IntVar t2(*this,1,p);
IntVar t3(*this,p,p);

mult(*this, a, b, t1);

mult(*this, c, d, t2);
mult(*this, t1, t2, t3);

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

82

Branching

Bad idea: try values one by one

Good idea: split variables

for variable x

with m = (min(x) + max(x)) / 2

branch xX<m or xzm
Typically good for problems involving
arithmetic constraints

exact reason needs to be explained later

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

Script: Branching

branch(*this, abcd,
INT_VAR_NONE,
INT_VAL_SPLIT MIN);

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 84

Search Tree

2829 nodes for first solution
Pretty bad...

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

85

Better Heuristic?

Try branches in different order

split with larger interval first
o try: INT_VAL_SPLIT_MAX

Search tree: 2999 nodes

worse in this case

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 86

Symmetries

Interested in values for A, B, C, D

Model admits equivalent solutions
interchange values for A, B, C, D

We can add order A, B, C, D:
A<B=<C=<D
Called “symmetry breaking constraint

”

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

Script: Symmetry Breaking

rel(this, a, IRT_LQ, b);
rel(this, b, IRT_LQ, c);
rel(this, c, IRT_LQ, d);

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 88

Eftfect of Symmetry Breaking

Search tree size 308 nodes

Let us try INT_VAL_SPLIT_MAX again
tree size 79 nodes!
interaction between branching and symmetry breaking
other possibility: AZzB=C =D
we need to investigate more (later)!

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 89

Any More Symmetries?

Observe: 711 has prime factor 79
thatis: 711 =79 x 9

Assume: A can be divided by 79

add: A=79x X

for some finite domain var X
remove A<B
the remaining B, C, D of course can still be
ordered

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 90

Any More Symmetries?

In Gecode
IntVar x(*this,1,p);
IntVar sn(*this,79,79);
mult(*this, x, sn, a);
Search tree 44 nodes!
now we are talking!

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Summary: Grocery

Branching: consider also
how to partition domain
in which order to try alternatives

Symmetry breaking
can reduce search space
might interact with branching
typical: order variables in solutions

Try to really understand problem!

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

Domination Constraints

In symmetry breaking, prune solutions
without interest

Similarly for best solution search
typically, interested in just one best solution

impose constraints to prune some solutions with same
n "
cost

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

Another Observation

Multiplication decomposed as
A‘B = T1 C‘D - T2 T1‘T2 = P

What if
AB=T, T,C=T, T,D=P
propagation changes: 355 nodes

propagation is not compositional!
another point to investigate

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

Magic Squares 2/9 4

Unique solution for n=3, upon the
symmetry breaking of slide 99.

Magic Squares

Find an nxn matrix such that
every field is integer between 1 and n?
fields pairwise distinct
sums of rows, columns, two main diagonals are equal

Very hard problem for large n
Here: we just consider the case n=3

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 96

Model

For each matrix field have variable X;j
x;e {1, .., 9

One additional variable s for sum
se{l,..,9x9}

All fields pairwise distinct
distinct(x;)

For each row i have constraint
Xot Xy * Xp=$
columns and diagonals similar

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

Script

Straightforward
Branching strategy

first-fail
split again: arithmetic constraints
try to come up with something that is really good!

Generalize it to arbitrary n

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 98

Symmetries

Clearly, we can require for first row that first
and last variable must be in order
Also, for opposing corners

In all (other combinations possible)
Xo0 < Xo2
Xo2 < X20
Xo0 < X22

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

Important Observation

We know the sum of all fields
1+2+ ... +9=9(9+1)/2=45

We “know” the sum of one row
S

We know that we have three rows
3xs =45

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 100

Implied Constraints

The constraint model already implies
3xs =45

implies solutions are the same

However, adding a propagator for the
constraint drastically improves propagation

Often also: redundant or implied constraint

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 101

Effect

Simple model 92 nodes
Symmetry breaking 29 nodes
Implied constraint 6 nodes

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

102

Summary: Magic Squares

Add implied constraints
are implied by model
increase constraint propagation
reduce search space
require problem understanding

Also as usual
break symmetries
choose appropriate branching

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 103

Outlook...

Common modeling principles

2010-03-25

what are the variables

finding the constraints

finding the propagators

implied (redundant) constraints
finding the branching
symmetry breaking

1D2204-1.02, Christian Schulte, ICT, KTH 104

Modeling Strategy

Understand problem
identify variables
identify constraints
identify optimality criterion

Attempt initial model simple?
try on examples to assess correctness
Improve model much harder!

scale up to real problem size

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 105

	Constraint Languages
	Gecode

