
DM841

Discrete Optimization

Part II

Lecture 5
Global Constraints

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Modeling: Global ConstraintsOutline

1. Modeling: Global Constraints
Global Constraints

2

Modeling: Global Constraints

In Gecode: http://www.gecode.org/doc-latest/reference/group_
_TaskModelInt.html

In Minizinc: from the root of the minizinc installation:

lib/minizinc/std/globals.mzn
gnome-open doc/index.html

3

http://www.gecode.org/doc-latest/reference/group__TaskModelInt.html
http://www.gecode.org/doc-latest/reference/group__TaskModelInt.html

Modeling: Global ConstraintsInteger Variables� �
IntVar x(home, 1, 4);
IntVar y(x);� �� �
IntVar x(home, 1, 4);
IntVar y;
y=x;� �
In both cases y is not allocating a new data structure but it is a reference to
the data structure of x

Overloaded operator:� �
std::cout << x <<std::endl;� �
Access the domain of the variables via iterator:� �
for (IntVarValues i(x); i(); ++i)
std::cout << i.val() << ’ ’;� �
Access the ranges via iterator:� �
for (IntVarRanges i(x); i(); ++i)
std::cout << i.min() << ".." << i.max() << ’ ’;� �

4

Modeling: Global ConstraintsVariable Interface
assigned(), update()� �
IntVar x(home, 0, 0);
rel(home, x, IRT_NQ, 0);
home.status();� �
Variables never reach empty domains, not either when the status is failed.
status() can be good for debugging purposes: check at the root node� �
int main(int argc, char* argv[]) {

Options opt("SEND+MORE=MONEY");
opt.parse(argc, argv);
Money* m = new Money(opt);
SpaceStatus status = m->status();
if (status == SS_FAILED)
cout << "Status: " << m->status() << " the space is failed at root."<< endl;
else if (status == SS_SOLVED)
cout << "Status: " << m->status()
<< " the space is not failed but the space has no brancher left."<< endl;
else if (status == SS_BRANCH)
cout << "Status: " << m->status()
<< " the space is not failed and we need to start branching."<< endl;
m->print(cout);
DFS<Money> e(m);
while (Money* s = e.next()) {
s->print(cout);
delete s;
}
delete m;
return 0;}� �5

Modeling: Global ConstraintsArrays of Variables

� �
IntVarArray x(home, 4, -10, 10);� �� �
IntVarArray x(home, 4); // does not create the array
for (int i=0; i<4; i++)
x[i] = IntVar(home, -10, 10);� �
Variables are only deleted when the space is deleted.

6

Modeling: Global ConstraintsMatrix Interface

� �
IntVarArgs x(n*m);

Matrix<IntVarArgs> mat(x, n, m);

IntVar mij = mat(i,j);� �

7

Modeling: Global ConstraintsArgument Arrays
For:

I dynamically builded arrays
I temporary variables
I arguments for post functions

They allocate memory from the heap and the memory is freed when their
desctructor is executed. (They cannot be updated.)� �
IntVarArgs x;
IntVarArgs x(5);
IntVarArgs x(home,5,0,10);� �� �
IntVarArgs x;
x << IntVar(home,0,10);
IntVarArgs y;
y << IntVar(home,10,20);
y << x;
linear(home, IntVarArgs()<<x[0]<<x[1], IRT_EQ, 0);� �
Concatenation:� �
IntVarArgs z = x+y;� �

8

Modeling: Global ConstraintsSlices

� �
IntVarArgs x(home, 10, 0, 10);� �� �
x.slice(5) // returns an array with elements x [5] ,x [6] , . . . ,x [9]
x.slice(5,1,3) // returns x [5] ,x [6] ,x [7]
x.slice(5,-1) // returns x [5] ,x [4] , . . . ,x [0]
x.slice(3,3) // returns x [3] ,x [6] ,x [9] .
x.slice(8,-2) // returns x [8] ,x [6] ,x [4] ,x [2] ,x [0]
x.slice(8,-2,3) // returns x [8] ,x [6] ,x [4]� �� �
IntArgs::create(n,start,inc)� �

9

Modeling: Global ConstraintsOutline

1. Modeling: Global Constraints
Global Constraints

10

Modeling: Global Constraintsdomain and member

� �
IntArgs a(4, 1,-3,5,-7)
IntSet d(a);
dom(home, x, d);� �
� �
member(home, x, y)� �

y ∈ {x1, . . . , xn}

11

Modeling: Global ConstraintsArithmetic Constraints

� �
linear(home, a, x, IRT_EQ, c);� �� �
rel(home, x+2*sum(z) < 4*y);� �� �
SendMoreMoney(void) : l(*this, 8, 0, 9) {
IntVar s(l[0]), e(l[1]), n(l[2]), d(l[3]),

m(l[4]), o(l[5]), r(l[6]), y(l[7]);
rel(*this, s != 0);
rel(*this, m != 0);
distinct(*this, l);
rel(*this, 1000*s + 100*e + 10*n + d

+ 1000*m + 100*o + 10*r + e
== 10000*m + 1000*o + 100*n + 10*e + y);

branch(*this, l, INT_VAR_SIZE_MIN(), INT_VAL_MIN());
}� �

Watch CP-2 of Van Hentenryck

12

Modeling: Global ConstraintsArithmetic Constraints

13

Modeling: Global ConstraintsGlobal Constraint: alldifferent

Global constraint:
set of more elementary constraints that exhibit a special structure when
considered together.

alldifferent constraint
Let x1, x2, . . . , xn be variables. Then:

alldifferent(x1, ..., xn) =

{(d1, ..., dn) | ∀i , di ∈ D(xi), ∀i 6= j , di 6= dj}.

Note: different notation and names used in the literature
In Gecode distinct
In Minizinc all_different_int(array[int] of var int: x)

14

Modeling: Global ConstraintsGlobal Constraint: table

Extensioanl Constraints:
In Gecode: TupleSet + extensional� �
TupleSet t;
t.add(IntArgs(3, 0,0,0));
t.add(IntArgs(3, 0,1,0));
t.add(IntArgs(3, 1,0,0));
t.finalize();� �� �
BoolVarArray x(home, 3, 0, 1);
extensionl(home, x, t);� �
Later regular

15

Modeling: Global ConstraintsGlobal Constraint: Sum

Sum constraint
Let x1, x2, . . . , xn be variables. To each variable xi , we associate a scalar
ci ∈ Q. Furthermore, let z be a variable with domain D(z) ⊆ Q. The sum
constraint is defined as

sum([x1, . . . , xn], z , c) =(d1, . . . , dn, d) | ∀i , di ∈ D(xi), d ∈ D(z), d =
∑

i=1,...,n

cidi

 .

In Gecode: linear(home, x, IRT_GR, c)
linear(Home home, const IntArgs &a, const IntVarArgs &x,
IntRelType irt, IntVar y, IntConLevel icl=ICL_DEF)

In Minizinc: sum_pred:
s = sum(i in index_set(x)) (coeffs[i]*x[i])

16

Modeling: Global ConstraintsReified constraints

I Constraints are in a big conjunction

I How about disjunctive constraints?

A + B = C ∨ C = 0

or soft constraints?

I Solution: reify the constraints:

(A + B = C ⇔ b0) ∧
(C = 0 ⇔ b1) ∧
(b0 ∨ b1 ⇔ true)

I These kind of constraints are dealt with in efficient way by the systems

I Then if optimization problem (soft constraints) ⇒ min
∑

i bi

17

Modeling: Global Constraints

In Gecode:

I almost all constraints have a reified version.

I Full and half reification.� �
rel(home, x, IRT_EQ, y, eqv(b));
rel(home, x, IRT_EQ, y, imp(b));
rel(home, x, IRT_EQ, y, pmi(b));� �
Half reification:
One way implication instead of double way.

18

Modeling: Global ConstraintsPosting Constraints in Gecode

I All post functions for constraints and branchers only accept variable
argument arrays. A variable array is automatically casted to a variable
argument array.

I All data structures passed are copied.

I Selecting the consistency level
I ICL_VAL: value propagation
I ICL_BND: bound consistency
I ICL_DOM: domain consistency
I ICL_DEF:default (constraint dependent)

Eg: linear: achieves ICL_BND in O(n) and ICL_DOM in O(dn)

19

Modeling: Global ConstraintsExample: Magic Sequence

A magic sequence of length n is a sequence of integers x0, . . . , xn−1 between
0 and n − 1, such that for all i in 0 to n − 1, the number i occurs exactly xi
times in the sequence.

Example: 6, 2, 1, 0, 0, 0, 1, 0, 0, 0 is a magic sequence since 0 occurs 6 times in
it, 1 occurs twice, ...� �
IntVarArray s(home,n,0,n-1);
for (int k=0; k<=n-1; k++) {
BoolVarArgs b(home, n, 0, 1);
for (int i=0; i<=n-1; i++)
rel(home, s[i], IRT_EQ, k, b[i]);

linear(home, b, IRT_EQ, s[k]);
}� �

20

Modeling: Global Constraints

See video cp-3 for a development of the propagation arising from thes
econstraints.

21

Modeling: Global ConstraintsGlobal Constraint: Knapsack

Knapsack constraint

Rather than constraining the sum to be a specific value, the knapsack
constraint states the sum to be within a lower bound l and an upper bound
u, i.e., such that D(z) = [l , u]. The knapsack constraint is defined as

knapsack([x1, . . . , xn], z , c) =(d1, . . . , dn, d) | di ∈ D(xi)∀i , d ∈ D(z), d ≤
∑

i=1,...,n

cidi

∩(d1, . . . , dn, d) | di ∈ D(xi)∀i , d ∈ D(z), d ≥
∑

i=1,...,n

cidi

 .

minD(z) ≤
∑

i=1,...,n

cixi ≤ maxD(z)

23

Modeling: Global Constraints

In Gecode:
linear(Home home, const IntArgs &a, const IntVarArgs &x,
IntRelType irt, IntVar y, IntConLevel icl=ICL_DEF)
In Minizinc: s = sum(i in index_set(x)) (coeffs[i]*x[i])

24

Modeling: Global ConstraintsGlobal Constraint: cardinality

cardinality or gcc (global cardinality constraint)

Let x1, . . . , xn be assignment variables whose domains are contained in
{v1, . . . , vn′} and let {cv1 , . . . , cvn′} be count variables whose domains are
sets of integers. Then

cardinality([x1, ..., xn],[cv1 , ..., cvn′]) =

{(w1, ...,wn, o1, ..., on′) | wj ∈ D(xj)∀j ,
occ(vi , (w1, ...,wn)) = oi ∈ D(cvi)∀i}.

(occ number of occurrences)

 generalization of alldifferent

In Gecode: count

25

Modeling: Global ConstraintsMagic Sequence Revised� �
MagicSequence(const SizeOptions& opt)

: n(opt.size()), s(*this,n,0,n-1) {
for (int i=n; i--;)

count(*this, s, i, IRT_EQ, s[i]);
linear(*this, s, IRT_EQ, n);
linear(*this, IntArgs::create(n,-1,1), s, IRT_EQ, 0);
branch(*this, s, INT_VAR_NONE(), INT_VAL_MAX());

}� �
n−1∑
i=0

xi = 0
n−1∑
i=0

(i − 1)xi = 0

� �
MagicSequence(const SizeOptions& opt)

: n(opt.size()), s(*this,n,0,n-1) {
count(*this, s, s, opt.icl());
linear(*this, IntArgs::create(n,-1,1), s, IRT_EQ, 0);
branch(*this, s, INT_VAR_NONE(), INT_VAL_MAX());

}� �
26

Modeling: Global ConstraintsGlobal Constraint: among and sequence

among

Let x1, . . . , xn be a tuple of variables, S a set of variables, and l and u two
nonnegative integers

among([x1, ..., xn], S , l , u)

At least l and at most u of variables take values in S .
In Gecode: count

sequence

Let x1, . . . , xn be a tuple of variables, S a set of variables, and l and u two
nonnegative integers, s a positive integer.

sequence([x1, ..., xn], S , l , u, s)

At least l and at most u of variables take values from S in s consecutive
variables

27

Modeling: Global ConstraintsCar Sequencing Problem

Car Sequencing Problem
I an assembly line makes 50 cars a day
I 4 types of cars
I each car type is defined by options: {air conditioning, sun roof}

type air cond. sun roof demand
a no no 20
b yes no 15
c no yes 8
d yes yes 7

I at most 3 cars in any sequence of 5 can be given air conditioning
I at most 1 in any sequence of 3 can be given a sun roof

Task: sequence the car types so as to meet demands while observing
capacity constraints of the assembly line.

28

Modeling: Global ConstraintsCar Sequencing Problem

Sequence constraints

29

Modeling: Global ConstraintsCar Sequencing Problem: CP model

Car Sequencing Problem

Let ti be the decision variable that indicates the type of car to assign to each
position i in the sequence.

cardinality([t1, . . . , t50], (a, b, c , d), (20, 15, 8, 7), (20, 15, 8, 7))

among([ti , . . . , ti+4], {b, d}, 0, 3), ∀i = 1..46
among([ti , . . . , ti+2], {c , d}, 0, 1), ∀i = 1..48
ti ∈ {a, b, c , d}, i = 1, . . . , 50.

Note: in Gecode among is count.
However, we can use sequence for the two among constraints above:

sequence([t1, . . . , t50], {b, d}, 0, 3, 5),

sequence([t11, . . . , t50], {c , d}, 0, 1, 3),

30

Modeling: Global ConstraintsCar Sequencing Problem: MIP model

31

Modeling: Global ConstraintsGlobal Constraint: nvalues

nvalues

Let x1, . . . , xn be a tuple of variables, and l and u two nonnegative integers

nvalues([x1, ..., xn], l , u)

At least l and at most u different values among the variables

 generalization of alldifferent
In Gecode: nvalues

32

Modeling: Global ConstraintsGlobal Constraint: stretch

stretch (In Gecode: via regular and extensional)

Let x1, . . . , xn be a tuple of variables with finite domains,
v an m-tuple of possible values of the variables,
l an m-tuple of lower bounds and u an m-tuple of upper bounds.
A stretch is a maximal sequence of consecutive variables that take the same
value, i.e., xj , . . . , xk for v if xj = . . . = xk = v and xj−1 6= v (or j = 1) and
xk+1 6= v (or k = n).

stretch([x1, ..., xn], v, l,u) stretch-cycle([x1, ..., xn], v, l,u)

for each j ∈ {1, . . . ,m} any stretch of value vj in x have length at least lj
and at most uj .

In addition:

stretch([x1, ..., xn], v, l,u,P)

with P set of patterns, i.e., pairs (vj , vj′). It imposes that a stretch of values
vj must be followed by a stretch of value vj′

33

Modeling: Global ConstraintsGlobal Constraint: element

“element” constraint
Let y be an integer variable,
z a variable with finite domain,
and c an array of constants, i.e., c = [c1, c2, . . . , cn].
The element constraint states that z is equal to the y -th variable in c , or
z = cy .
More formally:

element(y , z , [c1, . . . , cn]) = {(e, f) | e ∈ D(y), f ∈ D(z), f = ce}.

34

Modeling: Global ConstraintsGlobal Constraint: channel

“channel” constraint
Let y be array of integer variables, and x be an array of integer variables:

channel([y1, . . . , yn], [x1, . . . , xn]) =

{([e1, . . . , en], [d1, . . . , dn]) | ei ∈ D(yi),∀i , dj ∈ D(xj),∀j , ei = j∧dj = i}.

35

Modeling: Global ConstraintsEmployee Scheduling problem

Four nurses are to be assigned to eight-hour shifts.
Shift 1 is the daytime shift, while shifts 2 and 3 occur at night.
The schedule repeats itself every week. In addition,
1. Every shift is assigned exactly one nurse.
2. Each nurse works at most one shift a day.
3. Each nurse works at least five days a week.
4. To ensure a certain amount of continuity, no shift can be staffed by

more than two different nurses in a week.
5. To avoid excessive disruption of sleep patterns, a nurse cannot work

different shifts on two consecutive days.
6. Also, a nurse who works shift 2 or 3 must do so at least two days in a

row.

36

Modeling: Global ConstraintsEmployee Scheduling problem

Feasible Solutions
Solution viewed as assigning workers to shifts.

Sun Mon Tue Wed Thu Fri Sat
Shift1 A B A A A A A
Shift2 C C C B B B B
Shift3 D D D D C C D

Solution viewed as assigning shifts to workers.

Sun Mon Tue Wed Thu Fri Sat
Worker A 1 0 1 1 1 1 1
Worker B 0 1 0 2 2 2 2
Worker C 2 2 2 0 3 3 0
Worker D 3 3 3 3 0 0 3

37

Modeling: Global ConstraintsEmployee Scheduling problem

Feasible Solutions
Let wsd be the nurse assigned to shift s on day d , where the domain of wsd is
the set of nurses {A,B,C ,D}.
Let tid be the shift assigned to nurse i on day d , and where shift 0 denotes a
day off.

1. alldiff(w1d ,w2d ,w3d), d = 1, . . . , 7
2. cardinality(W , (A,B,C ,D), (5, 5, 5, 5), (6, 6, 6, 6))

3. nvalues({ws1, . . . ,ws7}, 1, 2), s = 1, 2, 3
4. alldiff(tAd , tBd , tCd , tDd), d = 1, ..., 7
5. cardinality({ti1, . . . , ti7}, 0, 1, 2), i = A,B,C ,D
6. stretch-cycle((ti1, . . . , ti7), (2, 3), (2, 2), (6, 6),P), i = A,B,C ,D
7. wtid d = i ,∀i , d , twsd s = s,∀s, d

38

Modeling: Global ConstraintsCP Modeling Guidelines [Hooker, 2011]

1. A specially-structured subset of constraints should be replaced by a
single global constraint that captures the structure, when a suitable
one exists. This produces a more succinct model and can allow more
effective filtering and propagation.

2. A global constraint should be replaced by a more specific one when
possible, to exploit more effectively the special structure of the
constraints.

3. The addition of redundant constraints (i..e, constraints that are implied
by the other constraints) can improve propagation.

4. When two alternate formulations of a problem are available, including
both (or parts of both) in the model may improve propagation.
Different variables are linked through the use of channeling constraints.

39

Modeling: Global ConstraintsGlobal Constraint: regular

“regular” constraint

Let M = (Q,Σ, δ, q0,F) be a DFA and let X = {x1, x2, . . . , xn} be a set of
variables with D(xi) ⊆ Σ for 1 ≤ i ≤ n. Then

regular(X ,M) =

{(d1, ..., dn) | ∀i , di ∈ D(xi), [d1, d2, . . . , dn] ∈ L(M)}.

40

Modeling: Global ConstraintsGlobal Constraint: regular

Example

Given the problem

x1 ∈ {a, b, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, b, c},

regular([x1, x2, x3, x4],M).

One solution to this CSP is x1 = a, x2 = b, x3 = a, x4 = a.
41

Modeling: Global Constraints

In Gecode:� �
DFA::Transition t[] = {{0, 0(a), 1}, {1, 0(a), 1}, {1, 1(b), 2}, {2, 1(b), 2},

{2, 0(a), 3}, {3, 0(a), 3}, {3, 0, -1},
{0,2(c),4}, {4, 2(c), 4}, {4, 0, -1}};

int f[] = {3,4,-1}; // vector of f ina l states
DFA d(0, t, f);
BoolVarArray x(home, 4, 0(a), 3(d));
extensional(home, x, d);� �� �
REG r = (REG(0) + (*REG(0) + REG(1) + *REG(1) + REG(0) + *REG(0))) | (*REG(3)));
DFA d(r);
extensional(home, x, d);� �

42

Modeling: Global ConstraintsExample

Nonogram

43

Modeling: Global ConstraintsAssignment problems

The assignment problem is to find a minimum cost assignment of m tasks to
n workers (m ≤ n).
Each task is assigned to a different worker, and no two workers are assigned
the same task.
If assigning worker i to task j incurs cost cij , the problem is simply stated:

min
∑

i=1,...,n

cixi

alldiff([x1, . . . , xn]),

xi ∈ Di ,∀i = 1, . . . , n.

Note: cost depends on position. Recall: with n = m min weighted bipartite
matching (Hungarian method)
with supplies/demands transshipment problem

44

Modeling: Global ConstraintsCircuit problems

Given a directed weighted graph G = (N,A), find a circuit of min cost:

min
∑

i=1,...,n

cxi xi+1

alldiff([x1, . . . , xn]),

xi ∈ Di ,∀i = 1, . . . , n.

Note: cost depends on sequence.

An alternative formulation is

min
∑

i=1,...,n

ciyi

circuit([y1, . . . , yn]),

yi ∈ Di = {j | (i , j) ∈ A},∀i = 1, . . . , n.

45

Modeling: Global ConstraintsGlobal Constraint: circuit

“circuit” constraint

Let X = {x1, x2, . . . , xn} be a set of variables with respective domains
D(xi) ⊆ {1, 2, ..., n} for i = 1, 2, ..., n. Then

circuit(x1, . . . , xn) ={(d1, ..., dn) | ∀i , di ∈ D(xi), d1, ..., dn is cyclic }.

46

Modeling: Global ConstraintsCircuit problems

A model with redundant constraints is as follows:

min z

z ≥
∑

i=1,...,n

cxi xi+1

z ≥
∑

i=1,...,n

ciyi

alldiff([x1, . . . , xn]),

circuit([y1, . . . , yn]),

x1 = yxn = 1, xi+1 = yxi , i = 1, . . . , n − 1
xi ∈ {1, . . . , n},∀i = 1, . . . , n,
yi ∈ Di = {j | (i , j) ∈ A},∀i = 1, . . . , n.

47

Modeling: Global ConstraintsScheduling Constraints

“disjunctive” scheduling

Let (s1, . . . , sn) be a tuple of (integer/real)-valued variables indicating the
starting time of a job j . Let (p1, . . . , pn) be the processing times of each job.

disjunctive([s1, . . . , sn], [p1, . . . , pn]) =

{[d1, . . . , dn] | ∀i , j , i 6= j (di + pi ≤ dj) ∨ (dj + pj ≤ di)}

48

Modeling: Global ConstraintsScheduling Constraints

cumulative for RCPSP [Aggoun and Beldiceanu, 1993]

I rj release time of job j
I pj processing time
I dj deadline
I cj resource consumption
I C limit not to be exceeded at any point in time

Let s be an n-tuple of (integer/real) values denoting the starting time of each
job

cumulative([sj], [pj], [cj],C) :=

{([dj], [pj], [cj],C) | ∀t
∑

i | di≤t≤di+pi

ci ≤ C}

With cj = 1 forall j and C = 1 disjunctive

49

Modeling: Global ConstraintsOthers

I Sorted constraints (sorted(x , y))

I Bin-packing constraints (binpacking(l , b, s))

I Geometrical packing constraints (nooverlap)
diffn((x1,∆x1), . . . , (xm,∆xm)) arranges a given set of
multidimensional boxes in n-space such that they do not overlap
(aka, nooverlap)

I Value precedence constraints (precede(x , s, t))

I Logical implication: conditional(D, C) between sets of constrains
D ⇒ C (ite)

50

Modeling: Global ConstraintsMore (not in gecode)

I clique(x |G , k) requires that a given graph contain a clique of size k

I cycle(x |y) select edges such that they form exactly y directed cycles in
a graph.

I cutset(x |G , k) requires that for the set of selected vertices V ′, the set
V \ V ′ induces a subgraph of G that contains no cycles.

51

Modeling: Global ConstraintsGlobal Constraint Catalog

52

Modeling: Global ConstraintsReferences

Hooker J.N. (2011). Hybrid modeling. In Hybrid Optimization, edited by P.M.
Pardalos, P. van Hentenryck, and M. Milano, vol. 45 of Optimization and Its
Applications, pp. 11–62. Springer New York.

van Hoeve W. and Katriel I. (2006). Global constraints. In Handbook of Constraint
Programming, chap. 6. Elsevier.

53

	Modeling: Global Constraints
	Global Constraints

