DM841

Discrete Optimization

Part II
 Lecture 8
 Constraint Propagation Algorithms for AC

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

AC4

Binary normalized problems - value oriented (fine grained)

```
function AC4(in \(X\) : set): Boolean ;
    begin
        /* initialization */;
    \(Q \leftarrow \emptyset ; S\left[x_{j}, v_{j}\right]=0, \forall v_{j} \in D\left(x_{j}\right), \forall x_{j} \in X ;\)
    foreach \(x_{i} \in X, c_{i j} \in C, v_{i} \in D\left(x_{i}\right)\) do
            initialize counter \(\left[x_{i}, v_{i}, x_{j}\right]\) to \(\left|\left\{v_{j} \in D\left(x_{j}\right) \mid\left(v_{i}, v_{j}\right) \in c_{i j}\right\}\right|\);
        if counter \(\left[x_{i}, v_{i}, x_{j}\right]=0\) then remove \(v_{i}\) from \(D\left(x_{i}\right)\) and add \(\left(x_{i}, v_{i}\right)\) to
        \(Q\);
        add \(\left(x_{i}, v_{i}\right)\) to each \(S\left[x_{j}, v_{j}\right]\) s.t. \(\left(v_{i}, v_{j}\right) \in c_{i j}\);
        if \(D\left(x_{i}\right)=\emptyset\) then return false ;
    /* propagation */;
    while \(Q \neq \emptyset\) do
        select and remove \(\left(x_{j}, v_{j}\right)\) from \(Q\);
        foreach \(\left(x_{i}, v_{i}\right) \in S\left[x_{j}, v_{j}\right]\) do
        if \(v_{i} \in D\left(x_{i}\right)\) then
                counter \(\left[x_{i}, v_{i}, x_{j}\right]=\) counter \(\left[x_{i}, v_{i}, x_{j}\right]-1\);
                if counter \(\left[x_{i}, v_{i}, x_{j}\right]=0\) then
                remove \(v_{i}\) from \(D\left(x_{i}\right)\); add \(\left(x_{i}, v_{i}\right)\) to \(Q\);
                if \(D\left(x_{i}\right)=\emptyset\) then return false ;
15 return true ;
    end
```


AC4

Example

$$
\begin{array}{r}
\mathcal{P}=\langle X=(x, y, z), \mathcal{D} \mathcal{E}=\{D(x)=D(y)=\{1,2,3,4\}, D(z)=\{3\}\} \\
\left.\left.\mathcal{C}=\left\{C_{1} \equiv x \leq y, C_{2} \equiv y \neq z\right\}\right\}\right\rangle
\end{array}
$$

$$
\begin{array}{lll}
\text { counter }[x, 1, y]=4 & \text { counter }[y, 1, x]=1 & \text { counter }[y, 1, z]=1 \\
\text { counter }[x, 2, y]=3 & \text { counter }[y, 2, x]=2 & \text { counter }[y, 2, z]=1 \\
\text { counter }[x, 3, y]=2 & \text { counter }[y, 3, x]=3 & \text { counter }[y, 3, z]=0 \\
\text { counter }[x, 4, y]=1 & \text { counter }[y, 4, x]=4 & \text { counter }[y, 4, z]=1 \\
& & \text { counter }[z, 3, y]=3
\end{array}
$$

$$
\begin{array}{rlr}
S[x, 1] & =\{(y, 1),(y, 2),(y, 3),(y, 4)\} & S[y, 1]=\{(x, 1),(z, 3)\} \\
S[x, 2] & =\{(y, 2),(y, 3),(y, 4)\} & S[y, 2]=\{(x, 1),(x, 2),(z, 3)\} \\
S[x, 3] & =\{(y, 3),(y, 4)\} & S[y, 3]=\{(x, 1),(x, 2),(x, 3)\} \\
S[x, 4] & =\{(y, 4)\} & S[y, 4]=\{(x, 1),(x, 2),(x, 3),(x, 4),(z, 3)\} \\
& S[z, 3]=\{(y, 1),(y, 2),(y, 4)\}
\end{array}
$$

AC6

Binary normalized problems
$S\left[x_{j}, v_{j}\right]$ list of values $\left(x_{i}, v_{i}\right)$ currently having $\left(x_{j}, v_{j}\right)$ as their first support function AC6(in X : set): Boolean;

begin

/* initialization */;
$Q \leftarrow \emptyset ; S\left[x_{j}, v_{j}\right]=0, \forall v_{j} \in D\left(x_{j}\right), \forall x_{j} \in X ;$
foreach $x_{i} \in X, c_{i j} \in C, v_{i} \in D\left(x_{i}\right)$ do
$v_{j} \leftarrow$ smallest value in $D\left(x_{j}\right)$ s.t. $\left(v_{i}, v_{j}\right) \in c_{i j} ;$
if v_{j} exists then add $\left(x_{i}, v_{i}\right)$ to $S\left[x_{j}, v_{j}\right]$;
else remove v_{i} from $D\left(x_{i}\right)$ and add $\left(x_{i}, v_{i}\right)$ to Q;
if $D\left(x_{i}\right)=\emptyset$ then return false ;
/* propagation */;
while $Q \neq \emptyset$ do
select and remove $\left(x_{j}, v_{j}\right)$ from Q;
foreach $\left(x_{i}, v_{i}\right) \in S\left[x_{j}, v_{j}\right]$ do

$$
\begin{aligned}
& O\left(e d^{2}\right) \text { time } \\
& O(e d) \text { space }
\end{aligned}
$$

16 return true ;
end

AC6

Example

$$
\begin{array}{r}
\mathcal{P}=\langle X=(x, y, z), \mathcal{D} \mathcal{E}=\{D(x)=D(y)=\{1,2,3,4\}, D(z)=\{3\}\} \\
\left.\left.\mathcal{C}=\left\{C_{1} \equiv x \leq y, C_{2} \equiv y \neq z\right\}\right\}\right\rangle
\end{array}
$$

$$
\begin{aligned}
& S[x, 1]=\{(y, 1),(y, 2),(y, 3),(y, 4)\} \\
& S[x, 2]=\{ \} \\
& S[x, 3]=\{ \} \\
& S[x, 4]=\{ \}
\end{aligned}
$$

$$
\begin{array}{r}
S[y, 1]=\{(x, 1),(z, 3)\} \\
S[y, 2]=\{(x, 2)\} \\
S[y, 3]=\{(x, 3)\} \\
S[y, 4]=\{(x, 4)\} \\
S[z, 3]=\{(y, 1),(y, 2),(y, 4)\}
\end{array}
$$

Reverse2001

Binary case

```
function Revise2001(in \(x_{i}\) : variable; \(c_{i j}\) : constraint): Boolean;
    begin
    1 CHANGE \(\leftarrow\) false;
    2 foreach \(v_{i} \in D\left(x_{i}\right)\) s.t. \(\operatorname{Last}\left(x_{i}, v_{i}, x_{j}\right) \notin D\left(x_{j}\right)\) do
    \(3 \quad v_{j} \leftarrow\) smallest value in \(D\left(x_{j}\right)\) greater than Last \(\left(x_{i}, v_{i}, x_{j}\right)\) s.t.
        \(\left(v_{i}, v_{j}\right) \in c_{i j}\);
        if \(v_{j}\) exists then Last \(\left(x_{i}, v_{i}, x_{j}\right) \leftarrow v_{j}\);
        else
            remove \(v_{i}\) from \(D\left(x_{i}\right)\);
                CHANGE \(\leftarrow\) true;
        return CHANGE ;
    end
function AC3/GAC3(in \(X\) : set): Boolean ;
    begin
            /* initalisation */;
                                    \(O\left(e d^{2}\right)\) time
                                    \(O(e d)\) space
7
    \(Q \leftarrow\left\{\left(x_{i}, c\right) \mid c \in C, x_{i} \in X(c)\right\} ;\)
    \(/^{*}\) propagation \(* /\);
    while \(Q \neq \emptyset\) do
9 select and remove \(\left(x_{i}, c\right)\) from \(Q\);
10 if Revise \(\left(x_{i}, c\right)\) then
11 if \(D\left(x_{i}\right)=\emptyset\) then return false ;
\(12 \quad\) else \(Q \leftarrow Q \cup\left\{\left(x_{j}, c^{\prime}\right) \mid c^{\prime} \in C \wedge c^{\prime} \neq c \wedge x_{i}, x_{j} \in X\left(c^{\prime}\right) \wedge j \neq i\right\}\);
13 return true ;
    end
```


Reverse2001

Example

$$
\begin{array}{r}
\mathcal{P}=\langle X=(x, y, z), \mathcal{D} \mathcal{E}=\{D(x)=D(y)=\{1,2,3,4\}, D(z)=\{3\}\} \\
\left.\left.\mathcal{C}=\left\{C_{1} \equiv x \leq y, C_{2} \equiv y \neq z\right\}\right\}\right\rangle
\end{array}
$$

$$
\begin{array}{lll}
\text { Last }[x, 1, y]=1 & \text { Last }[y, 1, x]=1 & \text { Last }[y, 1, z]=3 \\
\text { Last }[x, 2, y]=2 & \text { Last }[y, 2, x]=1 & \text { Last }[y, 2, z]=3 \\
\text { Last }[x, 3, y]=3 & \text { Last }[y, 3, x]=1 & \text { Last }[y, 3, z]=\text { nil } \\
\text { Last }[x, 4, y]=4 & \text { Last }[y, 4, x]=1 & \text { Last }[y, 4, z]=3 \\
& & \text { Last }[z, 3, y]=1
\end{array}
$$

Limitation of Arc Consistency

Example

$$
\langle x<y, y<z, z<x ; x, y, z \in\{1 . .100000\}\rangle
$$

is inconsistent.
Proof: Apply revise to $(x, x<y)$

$$
\langle x<y, y<z, z<x ; x \in\{1 . .99999\}, y, z \in\{1 . .100000\}\rangle,
$$

ecc. we end in a fail.

- Disadvantage: large number of steps. Run time depends on the size of the domains!
- Note: we could prove fail by transitivity of $<$. \rightsquigarrow Path consitency involves two constraints together

