FF505 Computational Science

MATLAB Section - Introduction 1 Matrix Algebra

Marco Chiarandini (marco@imada.sdu.dk)

Department of Mathematics and Computer Science (IMADA) University of Southern Denmark

Outline

Getting Started More on Matrix Calculations Math Functions

1. Getting Started

2. More on Matrix Calculations

3. Math Functions

Outline

Getting Started More on Matrix Calculations Math Functions

1. Getting Started

2. More on Matrix Calculations

3. Math Functions

MATLAB Desktop

Getting Started More on Matrix Calculations Math Functions

- Command window
- Workspace
- Command history
- Current folder browser
- Variable editor
- MATLAB program editor
- Help
- Desktop menu
- Docking/Undocking, maximize by double click
- Current folder
- Search path (File menu -> set path)
- \bullet Documentation: Press ? \rightarrow MATLAB \rightarrow Getting Started

Command line programming

%%% elementary operations
5+6
3-2
5*8
1/2
2^6
1 = 2 % false
1 ~= 2 % true. note, not "!="
1 && 0
1 0
xor(1,0)

Customization

MATLAB -> preferences Allows you personalize your MATLAB experience

Variable Assignment

The = sign in MATLAB represents the assignment or replacement operator. It has a different meaning than in mathematics.

Compare:

x = x + 3 In math it implies 0=2, which is an invalid statement In MATLAB it adds 2 to the current value of the variable

```
%% variable assignment
a = 3; % semicolon suppresses output
b = 'hi';
c = 3>=1;
```

x + 2 = 20 % wrong statement x = 5 + y % wrong if y unassigned

Variables are visible in the workspace

Names:

- [a-z][A-Z][0-9]_
- case sensitive
- max 63 chars

Variable Editor

Managing the Work Session

Getting Started More on Matrix Calculations Math Functions

who % lists variables currently in memory
whos % lists current variables and sizes
clear v % clear w/ no argt clears all
edit filename % edit a script file
clc % clears the Command window
... % ellipsis; continues a line
help rand % returns help of a function
quit % stops MATLAB

Predefined variables

pi Inf % 5/0 NaN % 0/0 eps % accuracy of computations i,j % immaginary unit i=j=sqrt(-1) 3+8i % a complex number (no *) Complex(1,-2)

Working with Files

MATLAB handles three types of files:

- M-files .m: Function and program files
- MAT-files .mat: binary files with name and values of variables
- data file .dat: ASCII files

%% loading data
load qly.dat
load qly.dat
load qlx.dat
save hello.txt v -ascii; % save as ascii
% fopen, fprintf, fscanf also work
% ls %% cd, pwd & other unix commands
work in matlab;
% to access shell, preface with "!"

Files are stored and searched in current directory and search path

Directories and paths

If we type problem1

- 1. seeks if it is a variable and displays its value
- 2. checks if it is one of its own programs and executes it
- 3. looks in the current directory for file program1.m and executes the file
- 4. looks in the search path for file program1.m and executes it

addpath dirname % adds the directory dirname to the search path cd dirname % changes the current directory to dirname dir % lists all files in the current directory dir dirname % lists all files in dirname path % displays the MATLAB search path pathtool % starts the Set Path tool pwd % displays the current directory rmpath dirname % removes the directory dirname from the search path what % lists MATLAB specific files in the current directory what dirname % lists MATLAB specific files in dirname which item % displays the path name of item

Getting Help

- help funcname: Displays in the Command window a description of the specified function funcname.
- lookfor topic: Looks for the string topic in the first comment line (the H1 line) of the HELP text of all M-files found on MATLABPATH (including private directories), and displays the H1 line for all files in which a match occurs.

Try: lookfor imaginary

 doc funcname: Opens the Help Browser to the reference page for the specified function funcname, providing a description, additional remarks, and examples.

Scripts, M-files

Scripts are

- collection of commands executed in sequence
- written in the MATLAB editor
- saved as MATLAB files (.m extension)

To create an MATLAB file from command-line

edit helloWorld.m

or from Menu on the top

Script: the Editor

Possible breakpoints

Courtesy of The MathWorks, Inc. Used with permission.

- Make an initial script Gravity and save it.
- When run, the script should display the following text:

This is my first script! Yuhuu!

Hint: use disp to display strings. Strings are written between single quotes, like 'This is a string'

1-D Arrays

Vectors: To create a row vector, separate the elements by commas. Use square brackets. For example,

>> p = [3,7,9] p = 3 7 9

You can create a column vector by using the transpose notation (').

>> p = [3,7,9]; p = 3 7 9

Appending vectors:

r = [2,4,20]; w = [9,-6,3]; u = [r,w] u = 2 4 20 9 -6 3 You can also create a column vector by separating the elements by semicolons. For example,

>> g = [3;7;9] g = 3 7 9

r = [2,4,20]; w = [9,-6,3]; u = [r;w] u = 2 4 20 9 -6 3

Matrices: spaces or commas separate elements in different columns, whereas semicolons separate elements in different rows.

Arrays

Getting Started More on Matrix Calculations Math Functions

Arrays are the basic data structures of MATLAB (weakly typed language - no need to declare the type) Types of arrays: numeric • character • logical • cell • structure • function handle

```
%% vectors and matrices
A = [1 2; 3 4; 5 6]
v = [1 2 3]
v = [1; 2; 3]
\mathbf{v} = [1:0.1:2] % from 1 to 2, with stepsize of 0.1. Useful for plot axes
\mathbf{v} = 1:6 % from 1 to 6, assumes stepsize of 1
C = 2*ones(2,3) % same as C = [2 2 2; 2 2 2]
w = ones(1,3) % 1x3 vector of ones
w = zeros(1.3)
w = rand(1,3) % drawn from a uniform distribution
w = randn(1,3) % drawn from a normal distribution (mean=0, var=1)
w = -6 + sqrt(10)*(randn(1, 10000)) \% (mean = 1, var = 2)
hist(w) % histogram
e = []; % empty vector
I = eve(4) \% 4x4 identity matrix
A = linspace(5.8.31) % equivalent to 5:0.1:8
```

Indexing

%% indexing A(3,2) % indexing is (row,col) A(2,:) % get the 2nd row. %% ":" means every elt along that dimension A(:,2) % get the 2nd col A(1,end) % 1st row, last elt. Indexing starts from 1. A(end,:) % last row

A([1 3],:) = [] % deletes 1st and 3rd rows
A(:,2) = [10 11 12]' % change second column
A = [A, [100; 101; 102]]; % append column vec
% A = [ones(size(A,1),1), A]; % e.g bias term in linear regression
A(:) % Select all elements as a column vector.

%% dimensions
sz = size(A)
size(A,1) % number of rows
size(A,2) % number of cols
length(v) % size of longest dimension

Plots

```
%% plotting
t = [0:0.01:0.98];
y1 = sin(2*pi*4*t);
plot(t,y1);
y2 = cos(2*pi*4*t);
hold on; % "hold off" to turn off
plot(t,y2,'r--');
xlabel('time');
ylabel('value');
legend('sin','cos');
title('my plot');
close; % or, "close all" to close all figs
```

```
figure(2), clf; % can specify the figure number
subplot(1,2,1); % Divide plot into 1x2 grid, access 1st element
plot(t,y1);
subplot(1,2,2); % Divide plot into 1x2 grid, access 2nd element
plot(t,y2);
axis([0.5 1 -1 1]); % change axis scale
```

help graph2D

- Rapid code iterations using cells in the editor
- cells are small sections of code performing specific tasks
- $\bullet\,$ they are separated by double %
- they can be executed independently, eg, CTRL+Enter and their parameters adjusted
- navigate by CTRL+SHIFT+Enter or by jumping
- publish in HTML or PDF or Latex (menu publish on the top).

Outline

Getting Started More on Matrix Calculations Math Functions

1. Getting Started

2. More on Matrix Calculations

3. Math Functions

Order of Operations

- 1. parenthesis, from innermost
- 2. exponentiation, from left to right
- 3. multiplication and division with equal precedence, from left to right
- 4. addition and subtraction with equal precedence, from left to right

```
>>4^2-12-8/4*2
ans =
    0
>>4^2-12-8/(4*2)
ans =
    3
>> 3*4^2 + 5
ans =
    53
>>(3*4)^2 + 5
ans =
    149
```

```
>>27^(1/3) + 32^(0.2)

ans =

5

>>27^(1/3) + 32^0.2

ans =

5

>>27^1/3 + 32^0.2

ans =

11
```

Creating Matrices

Getting Started More on Matrix Calculations Math Functions

eye(4) % identity matrix
zeros(4) % matrix of zero elements
ones(4) % matrix of one elements

A=rand(8) triu(A) % upper triangular matrix tril(A) diag(A) % diagonal

Can you create this matrix in one line of code?

-5	0	0	0	0	0	0	1	1	1	1
0	-4	0	0	0	0	0	0	1	1	1
0	0	-3	0	0	0	0	0	0	1	1
0	0	0	-2	0	0	0	0	0	0	1
0	0	0	0	-1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	2	0	0	0
1	1	0	0	0	0	0	0	3	0	0
1	1	1	0	0	0	0	0	0	4	0
1	1	1	1	0	0	0	0	0	0	5

	<pre>>> [eye(2), ones(2,3); zeros(2), [1:3;3:-1:1]]</pre>
)	ans =
	1 0 1 1 1 0 1 1 1 1 0 0 1 2 3
	0 0 3 2 1

Matrix-Matrix Multiplication

In the product of two matrices A * B,

the number of columns in A must equal the number of rows in B.

The product AB has the same number of rows as A and the same number of columns as B. For example

Remark:

Matrix multiplication does not have the commutative property; that is, in general, $AB \neq BA$. Make a simple example to demonstrate this fact.

Matrix Operations

```
%% matrix operations
A * C % matrix multiplication
B = [5 6; 7 8; 9 10] * 100 % same dims as A
A .* B % element-wise multiplcation
\% A .* C or A * B gives error – wrong dimensions
A .^ 2
1./B
log(B) % functions like this operate element-wise on vecs or matrices
exp(B) % overflow
abs(B)
v = [-3:3] \% = [-3 - 2 - 1 \ 0 \ 1 \ 2 \ 3]
-v \% - 1 * v
v + ones(1, length(v))
\% v + 1 \% same
A' % (conjuate) transpose
```

Multidimensional Arrays

Consist of two-dimensional matrices layered to produce a third dimension. Each layer is called a page.

cat(2,A,B) % is the same as [A,B]. cat(1,A,B) % is the same as [A;B].

Array Operations

• Addition/Subtraction: trivial

Multiplication:

- of an array by a scalar is easily defined and easily carried out.
- of two arrays is not so straightforward: MATLAB uses two definitions of multiplication:
 - array multiplication (also called element-by-element multiplication)
 - matrix multiplication
- Division and exponentiation MATLAB has two forms on arrays.
 - element-by-element operations
 - matrix operations

Element-by-Element Operations

Symbol	Operation	Form	Examples
+	Scalar-array addition	A + b	[6,3]+2=[8,5]
-	Scalar-array subtraction	A - b	[8,3]-5=[3,-2]
+	Array addition	A + B	[6,5]+[4,8]=[10,13]
-	Array subtraction	A - B	[6,5]-[4,8]=[2,-3]
.*	Array multiplication	A.*B	[3,5].*[4,8]=[12,40]
./	Array right division	A./B	[2,5]./[4,8]=[2/4,5/8]
.\	Array left division	A.\B	[2,5].\[4,8]=[2\4,5\8]
.^	Array exponentiation	A.^B	[3,5].^2=[3^2,5^2]
			2.^[3,5]=[2^3,2^5]

 $[3,5].^{[2,4]} = [3^{2},5^{4}]$

Backslash or Matrix Left Division

 $A \in INV(A) B$ except that it is computed in a different way: X = A B is the solution to the equation A X = B computed by Gaussian elimination.

Slash or right matrix division:

A/B is the matrix division of B into A, which is roughly the same as A*INV(B), except it is computed in a different way. More precisely, $A/B = (B'\setminus A')'$.

dot(A,B) scalar product: computes the projection of a vector on the other. eg. dot(Fr,r) computes component of force F along direction rInner product, generalization of dot product

v=1:10 u=11:20 u*v' % inner or scalar product ui=u+i ui' v*ui' % inner product of C^n norm(v,2) sqrt(v*v')

cross(A,B) cross product: eg: moment $\mathbf{M} = \mathbf{r} \times \mathbf{F}$

Exercise: Projectile trajectory

Getting Started More on Matrix Calculations Math Functions

p position vector

$$oldsymbol{p}_t = oldsymbol{p}_0 + oldsymbol{u}_t s_m t + rac{oldsymbol{g} t^2}{2}$$

 s_m muzzle velocity (speed at which the projectile left the weapon) u_t is the direction the weapon was fired $g=-9.81 {\rm m s}^{-1}$

Predict the landing spot

$$t_{i} = \frac{-u_{i}s_{m} \pm \sqrt{u_{y}^{2}s_{m}^{2} - 2g_{y}(p_{y0} - p_{yt})}}{g_{y}} \qquad \mathbf{p}_{E} = \begin{bmatrix} p_{x0} + u_{x}s_{m}t_{i} \\ p_{y0} \\ p_{z0} + u_{z}s_{m}t_{i} \end{bmatrix}$$

Plot the trajectory in 2D.

Exercise: Projectile trajectory

Given a firing point S and s_m and a target point E, we want to know the firing direction u, |u| = 1.

$$E_{x} = S_{x} + u_{x}s_{m}t_{i} + \frac{1}{2}g_{x}t_{i}^{2}$$

$$E_{y} = S_{y} + u_{y}s_{m}t_{i} + \frac{1}{2}g_{y}t_{i}^{2}$$

$$E_{z} = S_{z} + u_{z}s_{m}t_{i} + \frac{1}{2}g_{z}t_{i}^{2}$$

$$1 = u_{x}^{2} + u_{y}^{2} + u_{z}^{2}$$

four eq. in four unknowns, leads to:

$$|\boldsymbol{g}|^2 t_i^4 - 4(\boldsymbol{g} \cdot \boldsymbol{\Delta} + s_m^2) t_i^2 + 4|\boldsymbol{\Delta}|^2 = 0, \qquad \boldsymbol{\Delta} = \boldsymbol{E} - \boldsymbol{S}$$

solve in t, and interpret the solution.

Useful Functions

```
% max (or min)
a = [1 15 2 0.5]
val = max(a)
[val,ind] = max(a)
```

% find

find(a < 3)
A = magic(3) %N-by-N matrix
 constructed from the integers 1
 through N^2 with equal row, column,
 and diagonal sums.</pre>

```
[r,c] = find(A>=7)
```

```
% sum, prod
sum(a)
prod(a)
floor(a) % or ceil(a)
max(rand(3),rand(3))
max(A,[],1)
min(A,[],2)
A = magic(9)
sum(A,1)
sum(A,2)
```

```
% pseudo-inverse
pinv(A) % inv(A'*A)*A'
```

```
% check empty e=[]
isempty(e)
numel(A)
size(A)
prod(size(A))
```

```
sort(4:-1:1)
sort(A) % sorts the columns
```

Useful Functions

Working with polynomials:

$$f(x) = a_1 x^n + a_2 x^{n-1} + a_3 x^{n-2} + \ldots + a_{n-1} x^2 + a_n x + a_{n+1}$$

is represented in MATLAB by the vector

 $[a_1, a_2, a_3, \ldots, a_{n-1}, a_n, a_{n+1}]$

help polyfum
r=roots([1,-7,40,-34]) % x^3-7x^2+40x-34
poly(r) % returns the polynomial whose roots are r
roots(poly(1:20))
poly(A) % coefficients of the characteristic polynomial, det(lambda*EYE(SIZE(A)) - A)

Reshaping

```
%% reshape and replication
A = magic(3) % magic square
A = [A [0;1;2]]
reshape(A,[4 3]) % columnwise
reshape(A,[2 6])
v = [100;0;0]
A+v
A + repmat(v,[1 4])
```

Outline

Getting Started More on Matrix Calculations Math Functions

1. Getting Started

2. More on Matrix Calculations

3. Math Functions

Common Mathematical Functions

And the second se	
Exponential	
exp(x)	Exponential; e^x .
sqrt(x)	Square root; \sqrt{x} .
Logarithmic	
log(x)	Natural logarithm; ln x.
log10(x)	Common (base-10) logarithm; $\log x = \log_{10} x$.
Complex	
abs(x)	Absolute value; x.
angle(x)	Angle of a complex number <i>x</i> .
conj(x)	Complex conjugate.
imag(x)	Imaginary part of a complex number x.
real(x)	Real part of a complex number x.
Numeric	
ceil(x)	Round to the nearest integer toward ∞ .
fix(x)	Round to the nearest integer toward zero.
floor(x)	Round to the nearest integer toward $-\infty$.
round(x)	Round toward the nearest integer.
sign(x)	Signum function:
	+1 if $x > 0$; 0 if $x = 0$; -1 if $x < 0$.

Common Mathematical Functions

Trigonometric*	
cos(x)	Cosine; $\cos x$.
cot(x)	Cotangent; cot <i>x</i> .
csc(x)	Cosecant; $\csc x$.
sec(x)	Secant; sec <i>x</i> .
sin(x)	Sine; sin <i>x</i> .
tan(x)	Tangent; tan x.
Inverse trigonometric [†]	
acos(x)	Inverse cosine; $\arccos x = \cos^{-1} x$.
acot(x)	Inverse cotangent; $\operatorname{arccot} x = \operatorname{cot}^{-1} x$.
acsc(x)	Inverse cosecant; $\operatorname{arccsc} x = \operatorname{csc}^{-1} x$.
asec(x)	Inverse secant; arcsec $x = \sec^{-1} x$.
asin(x)	Inverse sine; $\arcsin x = \sin^{-1} x$.
atan(x)	Inverse tangent; $\arctan x = \tan^{-1} x$.
atan2(y,x)	Four-quadrant inverse tangent.

*These functions accept x in radians.

[†]These functions return a value in radians.

Common Mathematical Functions

Hyperbolic	
cosh(x)	Hyperbolic cosine; $\cosh x = (e^x + e^{-x})/2$.
coth(x)	Hyperbolic cotangent; $\cosh x / \sinh x$.
csch(x)	Hyperbolic cosecant; $1/\sinh x$.
sech(x)	Hyperbolic secant; $1/\cosh x$.
sinh(x)	Hyperbolic sine; $\sinh x = (e^x - e^{-x})/2$.
tanh(x)	Hyperbolic tangent; $\sinh x / \cosh x$.
Inverse hyperbolic	
acosh(x)	Inverse hyperbolic cosine
acoth(x)	Inverse hyperbolic cotangent
acsch(x)	Inverse hyperbolic cosecant
asech(x)	Inverse hyperbolic secant
asinh(x)	Inverse hyperbolic sine
atanh(x)	Inverse hyperbolic tangent