FF505

Computational Science

Lecture 2
 Linear Algebra with Matlab Linear Systems

Marco Chiarandini (marco@imada.sdu.dk)
Department of Mathematics and Computer Science (IMADA)
University of Southern Denmark

Outline

1. An Example: Electrical Networks
2. Matrices and Vectors in MatLab
3. Solving Linear Systems

Resume

- MATLAB, numerical computing vs symbolic computing
- MATLAB Desktop
- Script files
- 1D and 2D arrays
- Plot
- Interacting with matlab
- matrices and vectors
- solving linear systems
- determinants
- linear transformation
- eigenvalues and eigenvectors
- diagonalization?
- spectral theorem?
- car market assignment?

Outline

1. An Example: Electrical Networks

2. Matrices and Vectors in MatLab
3. Solving Linear Systems

Electrical Networks

We want to determine the amount of current present in each branch.

Kirchoff's Laws

- At every node, the sum of the incoming currents equals the sum of the outgoing currents
- Around every closed loop, the algebraic sum of the voltage gains must equal the algebraic sum of the voltage drops.

Voltage drops E (by Ohm's law)

$$
E=i R
$$

$$
\begin{aligned}
i_{1}-i_{2}+i_{3} & =0 \\
-i_{1}+i_{2}-i_{3} & =0 \\
4 i_{1}+2 i_{2} & =8 \\
2 i_{2}+5 i_{3} & =9
\end{aligned}
$$

node A
node B
top loop
bottom loop

Chemical Equations

$$
x_{1} \mathrm{CO}_{2}+x_{2} \mathrm{H}_{2} \mathrm{O} \rightarrow x_{3} \mathrm{O}_{2}+x_{4} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

To balance the equation, we must choose $x_{1}, x_{2}, x_{3}, x_{4}$ so that the numbers of carbon, hydrogen, and oxygen atoms are the same on each side of the equation.

$$
\begin{aligned}
x_{1} & =6 x_{4} \\
2 x_{1}+x_{2} & =2 x_{3}+6 x_{4} \\
2 x_{2} & =12 x_{4}
\end{aligned}
$$

carbon atoms
oxygen
hydrogen

Outline

1. An Example: Electrical Networks
2. Matrices and Vectors in MatLab

3. Solving Linear Systems

Matrix Multiplication

$$
\begin{array}{r}
i_{1}-i_{2}+i_{3}=0 \\
-i_{1}+i_{2}-i_{3}=0 \\
4 i_{1}+2 i_{2}=8 \\
2 i_{2}+5 i_{3}=9
\end{array}
$$

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
4 & 2 & 0 \\
0 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
8 \\
9
\end{array}\right]
$$

node A
node B
top loop
bottom loop

$$
A \mathbf{x}=\mathbf{b}
$$

Matrix Multiplication

$$
\begin{aligned}
x_{1} & =6 x_{4} \\
2 x_{1}+x_{2} & =2 x_{3}+6 x_{4} \\
2 x_{2} & =12 x_{4}
\end{aligned}
$$

carbon atoms

oxygen
hydrogen

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -6 \\
2 & 1 & 2 & 6 \\
0 & 2 & 0 & 12
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad A \mathbf{x}=\mathbf{0}
$$

Creating Matrices

```
eye(4) % identity matrix
zeros(4) % matrix of zero elements
ones(4) % matrix of one elements
```

```
A=rand(8)
triu(A) % upper triangular matrix
tril(A)
diag(A) % diagonal
```

```
>> [ eye(2), ones(2,3); zeros(2),
    [1:3;3:-1:1] ]
ans =
    10 1 1 1
    0 1 1 1 1
    0 0 1 2 3
    0 0 3 2 1
```

Can you create this matrix in one line of code?

-5	0	0	0	0	0	0	1	1	1	1
0	-4	0	0	0	0	0	0	1	1	1
0	0	-3	0	0	0	0	0	0	1	1
0	0	0	-2	0	0	0	0	0	0	1
0	0	0	0	-1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	2	0	0	0
1	1	0	0	0	0	0	0	3	0	0
1	1	1	0	0	0	0	0	0	4	0
1	1	1	1	0	0	0	0	0	0	5

Matrix-Matrix Multiplication

In the product of two matrices A * B, the number of columns in A must equal the number of rows in B.

The product $A B$ has the same number of rows as A and the same number of columns as B. For example

```
>> A=randi(10,3,2) % returns a 3-by-2 matrix containing pseudorandom integer values
            drawn from the discrete uniform distribution on 1:10
A =
    610
    104
    5 8
>> C=randi (10,2,3)*100
C =
    1000900400
    200700 200
>> A*C % matrix multiplication
ans =
    8000 12400 4400
    10800 11800 4800
    6600 10100 3600
```

Exercise: create a small example to show that in general, $A B \neq B A$.

Matrix Operations

```
%% matrix operations
A * C % matrix multiplication
B = [5 6; 7 8; 9 10] * 100 % same dims as A
A .* B % element-wise multiplcation
% A .* C or A * B gives error - wrong dimensions
A .- 2
1./B
log(B) % functions like this operate element-wise on vecs or matrices
exp(B) % overflow
abs (B)
v}=[-3:3] % = [l-3-2-1 0 1 2 3] [-1
-v % -1*v
v + ones(1,length(v))
%v+1% same
A' % (conjuate) transpose
```


Array Operations

- Addition/Subtraction: trivial
- Multiplication:
- of an array by a scalar is easily defined and easily carried out.
- of two arrays is not so straightforward:

MATLAB uses two definitions of multiplication:

- array multiplication (also called element-by-element multiplication)
- matrix multiplication
- Division and exponentiation MATLAB has two forms on arrays.
- element-by-element operations
- matrix operations
\rightsquigarrow Remark:
the operation division by a matrix is not defined. In MatLab it is defined but it has other meanings.

Element-by-Element Operations

Symbol	Operation	Form	Examples
+	Scalar-array addition	$\mathrm{A}+\mathrm{b}$	$[6,3]+2=[8,5]$
-	Scalar-array subtraction	A - b	$[8,3]-5=[3,-2]$
+	Array addition	$A+B$	$[6,5]+[4,8]=[10,13]$
-	Array subtraction	A - B	$[6,5]-[4,8]=[2,-3]$
.*	Array multiplication	A.*B	$[3,5] . *[4,8]=[12,40]$
./	Array right division	A./B	$[2,5] . /[4,8]=[2 / 4,5 / 8]$
.$\$ & Array left division & A. $\backslash \mathrm{B}$	$[2,5] . \backslash[4,8]=[2 \backslash 4,5 \backslash 8]$		
-	Array exponentiation	A. ${ }^{-B}$	$[3,5] . \sim 2=[3 \sim 2,5 \sim 2]$
			2. $\sim[3,5]=[2-3,2 \sim 5]$
			$[3,5] . \sim[2,4]=\left[3^{\sim} 2,5 \sim 4\right]$

Backslash or Matrix Left Division

$A \backslash B$ is roughly like $\operatorname{INV}(A) * B$ except that it is computed in a different way: $X=A \backslash B$ is the solution to the equation $A * X=B$ computed by Gaussian elimination.

Slash or right matrix division:
A / B is the matrix division of B into A, which is roughly the same as $A * I N V(B)$, except it is computed in a different way. More precisely, $A / B=\left(B^{\prime} \backslash A^{\prime}\right)$ '.

Dot and Cross Products

$\operatorname{dot}(A, B)$ inner or scalar product: computes the projection of a vector on the other. eg. $\operatorname{dot}(\mathrm{Fr}, \mathrm{r})$ computes component of force F along direction r //Inner product, generalization of dot product

```
v=1:10
u=11:20
u*v' % inner or scalar product
ui=u+i
ui'
v*ui' % inner product of C^n
norm(v,2)
sqrt(v*v')
```

$\operatorname{cross}(A, B)$ cross product: eg: moment $M=r \times \mathbf{F}$

Exercise: Projectile trajectory

p position vector

$$
\boldsymbol{p}_{t}=\boldsymbol{p}_{0}+\boldsymbol{u}_{t} s_{m} t+\frac{\boldsymbol{g} t^{2}}{2}
$$

s_{m} muzzle velocity (speed at which the projectile left the weapon)
u_{t} is the direction the weapon was fired
$g=-9.81 \mathrm{~ms}^{-1}$

Predict the landing spot

$$
t_{i}=\frac{-u_{i} s_{m} \pm \sqrt{u_{y}^{2} s_{m}^{2}-2 g_{y}\left(p_{y 0}-p_{y t}\right)}}{g_{y}} \quad \boldsymbol{p}_{E}=\left[\begin{array}{c}
p_{x 0}+u_{x} s_{m} t_{i} \\
p_{y 0} \\
p_{z 0}+u_{z} s_{m} t_{i}
\end{array}\right]
$$

Plot the trajectory in 2D.

Exercise: Projectile trajectory

Given a firing point S and s_{m} and a target point \boldsymbol{E}, we want to know the firing direction $u,|\boldsymbol{u}|=1$.

$$
\begin{aligned}
E_{x} & =S_{x}+u_{x} s_{m} t_{i}+\frac{1}{2} g_{x} t_{i}^{2} \\
E_{y} & =S_{y}+u_{y} s_{m} t_{i}+\frac{1}{2} g_{y} t_{i}^{2} \\
E_{z} & =S_{z}+u_{z} s_{m} t_{i}+\frac{1}{2} g_{z} t_{i}^{2} \\
1 & =u_{x}^{2}+u_{y}^{2}+u_{z}^{2}
\end{aligned}
$$

four eq. in four unknowns, leads to:

$$
|\boldsymbol{g}|^{2} t_{i}^{4}-4\left(\boldsymbol{g} \cdot \boldsymbol{\Delta}+s_{m}^{2}\right) t_{i}^{2}+4|\boldsymbol{\Delta}|^{2}=0, \quad \boldsymbol{\Delta}=\boldsymbol{E}-\boldsymbol{S}
$$

solve in t, and interpret the solution.

Reshaping

```
%% reshape and replication
A = magic(3) % magic square
A = [A [0;1;2]]
reshape(A,[4 3]) % columnwise
reshape(A,[2 6])
v = [100;0;0]
A+v
A + repmat(v,[1 4])
```


Matrix Functions

Eigenvalues and eigenvectors:

```
A = ones(6)
trace(A)
A = A - tril(A)-triu(A,2)
eig(A)
diag(ones(3,1),-1)
[V,D]=eig(diag(1:4))
rank(A) % rank of A
orth(A) % orthonormal basis
```


Visualizing Eigenvalues

```
A=[5/4,0;0,3/4];
eigshow(A) %effect of operator A on unit
    verctor
```


Outline

1. An Example: Electrical Networks
2. Matrices and Vectors in MatLab
3. Solving Linear Systems

Systems of Linear Equations

How many solutions have these linear systems? Find it out using the graphical approach.

$$
\begin{aligned}
& 6 x-10 y=2 \quad \% \text { plot functions in implicit form } \\
& 3 x- \\
& 4 y=5 \\
& 3 x-4 y=5 \\
& 6 x-8 y=10 \\
& 3 x-4 y=5 \\
& 6 x-8 y=3
\end{aligned}
$$

Systems of Linear Equations

$$
\begin{aligned}
6 x-\quad 10 y & =2 \\
3 x-\quad 4 y & =5
\end{aligned}
$$

```
% plot functions in implicit form
ezplot('6*x-10*y=2',[0 10 0 10]),
hold,
ezplot('3*x-4*y=5',[[0 10 0 10}]\mathrm{ ) 
```

has one single solution

$$
\begin{aligned}
& \left.3 x-4 y=5 \begin{array}{l}
\text { ezplot }\left('^{\prime} 3 * \mathrm{x}-4 * \mathrm{y}=5,,\left[\begin{array}{llll}
0 & 10 & 0 & 10
\end{array}\right]\right) \\
\text { hold, } \\
\text { ezplot }\left(\prime 6 * \mathrm{x}-8 * \mathrm{y}=10,,\left[\begin{array}{llll}
0 & 10 & 0 & 10
\end{array}\right]\right)
\end{array}\right] .8 y=10
\end{aligned}
$$

has infinite solutions

$$
\begin{array}{ll}
3 x-\quad 4 y= & 5 \\
6 x-\quad 8 y= & 3
\end{array}
$$

has no solution

```
ezplot('3*x-4*y=5',[[0 10 0 10]),
```

ezplot('3*x-4*y=5',[[0 10 0 10]),
hold,
hold,
ezplot('6*x-8*y=3',[[0 10 0 10}]

```
ezplot('6*x-8*y=3',[[0 10 0 10}]
```


Matrix Form

The linear system:

$$
\begin{aligned}
& 2 x_{1}+9 x_{2}=5 \\
& 3 x_{1}-4 x_{2}=7
\end{aligned}
$$

can be expressed in vector-matrix form as:

$$
\left[\begin{array}{cc}
2 & 9 \\
3 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

In general, a set of m equations in n unknowns can be expressed in the form $A \mathrm{x}=\mathrm{b}$, where A is $m \times n, \mathrm{x}$ is $n \times 1$ and b is $m \times 1$.

The inverse of A is denoted A^{-1} and has property that

$$
A^{-1} A=A A^{-1}=I
$$

Hence the solution to our system is:

$$
\mathbf{x}=A^{-1} \mathbf{b}
$$

Inverse and Determinant

Compute the inverse and the determinant of this matrix in Matlab:
>> $A=\left[\begin{array}{lll}3 & -4 ; & 6\end{array}\right]$;

Has the system solutions?
What about the system in the previous slide? What are its solutions?

A matrix is singular if $\operatorname{det}(A)=|A|=0$
Inverse of a square matrix A is defined only if A is nonsingular.
If A is singular, the system has no solution

```
>> A=[3 -4; 6 -8];
>> det(A)
ans =
    0
>> inv(A)
Warning: Matrix is singular to working precision.
ans =
    Inf Inf
    Inf Inf
```

For a 2×2 matrix the matrix inverse is

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right]^{T}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

For a 3×3 matrix

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

the matrix inverse is

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{lll}
+\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| & -\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| & +\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
-\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right| & +\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right| & -\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right| \\
+\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right| & -\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right| & +\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
\end{array}\right]^{T}
$$

Calculating the inverse

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)
$$

$\operatorname{adj}(\mathrm{A})$ is the adjugate matrix of A :

1. Calculate the (i, j) minor of A, denoted $M_{i j}$, as the determinant of the $(n-1) \times(n-1)$ matrix that results from deleting row i and column j of A.
2. Calculate the cofactor matrix of A, as the $n \times n$ matrix C whose (i, j) entry is the (i, j) cofactor of A

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

3. set $\operatorname{adj}(\mathrm{A})_{i j}=C_{j i}$

Left Division Method

- $\mathbf{x}=A^{-1} \mathbf{b}$ rarely applied in practice because calculation is likely to introduce numerical inaccuracy
- The inverse is calculated by LU decomposition, the matrix form of Gaussian elimination.

```
% left division method
x = A\b
```

$$
\begin{gathered}
A=L U \\
P A=L U
\end{gathered}
$$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

- for a matrix $A, n \times n, \operatorname{det}(A) \neq 0 \Leftrightarrow \operatorname{rank}$ of A is n
- for a system $A \mathbf{x}=\mathbf{b}$ with m equations and n unknowns a solution exists iff $\operatorname{rank}(A)=\operatorname{rank}([A \mathbf{b}])=r$
- if $r=n \rightsquigarrow$ unique
- if $r<n \rightsquigarrow$ infinite sol.
- for a homogeneous system $A \mathbf{x}=\mathbf{0}$ it is always $\operatorname{rank}(A)=\operatorname{rank}([A \mathbf{b}])$ and there is a nonzero solution iff $\operatorname{rank}(A)<n$
- $A \backslash b$ works for square and nonsquare matrices. If nonsquare $(m<n)$ then the system is undetermined (infinite solutions). $A \backslash b$ returns one variable to zero - $\mathrm{A} \backslash \mathrm{b}$ does not work when $\operatorname{det}(A)=0$.

```
>> A=[2, -4,5;-4,-2,3;2,6,-8];
>> b=[-4;4;0];
>> rank(A)
ans =
    2
>> rank([A,b])
ans =
    2
>> x=A\b
Warning: Matrix is singular to working
    precision.
x =
    NaN
    NaN
    NaN
```

However since

$$
\operatorname{rank}(A)=\operatorname{rank}([A \mathbf{b}])
$$

an infinite number of solutions exist (undetermined system).
$\mathrm{x}=\mathrm{pinv}(\mathrm{A}) \mathrm{b}$ solves with pseudoinverse and $\operatorname{rref}([A, b])$ finds the reduced row echelon form

Overdetermined Systems
An overdetermined system is a set of equations that has more independent equations than unknowns ($m>n$).

For such a system the matrix inverse method will not work because the A matrix is not square.

However, some overdetermined systems have exact solutions, and they can be obtained with the left division method $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$

For other overdetermined systems, no exact solution exists. We need to check the ranks of A and $[A \mathbf{b}]$ to know whether the answer is the exact solution. If a solution does not exist, the left-division answer is the least squares solution.

Flowchart for Linear System Solver

