FF505 Computational Science

Lecture 2 Linear Algebra with Matlab Linear Systems

Marco Chiarandini (marco@imada.sdu.dk)

Department of Mathematics and Computer Science (IMADA) University of Southern Denmark

Outline

An Example: Electrical Netw Matrices and Vectors in Mat Solving Linear Systems

1. An Example: Electrical Networks

2. Matrices and Vectors in MatLab

3. Solving Linear Systems

Resume

- MATLAB, numerical computing vs symbolic computing
- MATLAB Desktop
- Script files
- 1D and 2D arrays
- Plot
- Interacting with matlab
- matrices and vectors
- solving linear systems
- determinants
- linear transformation
- eigenvalues and eigenvectors
- diagonalization?
- spectral theorem?

- projectile trajectory?
- car market assignment?

Outline

An Example: Electrical Netw Matrices and Vectors in Matl Solving Linear Systems

1. An Example: Electrical Networks

2. Matrices and Vectors in MatLab

3. Solving Linear Systems

Electrical Networks

Kirchoff's Laws

- At every node, the sum of the incoming currents equals the sum of the outgoing currents
- Around every closed loop, the algebraic sum of the voltage gains must equal the algebraic sum of the voltage drops.

Voltage drops E (by Ohm's law)

E = iR

$$i_1 - i_2 + i_3 = 0$$

-i_1 + i_2 - i_3 = 0
$$4i_1 + 2i_2 = 8$$

$$2i_2 + 5i_3 = 9$$

node A node B top loop bottom loop

$x_1 \mathrm{CO}_2 + x_2 \mathrm{H}_2 \mathrm{O} \rightarrow x_3 \mathrm{O}_2 + x_4 \mathrm{C}_6 \mathrm{H}_{12} \mathrm{O}_6$

To balance the equation, we must choose x_1, x_2, x_3, x_4 so that the numbers of carbon, hydrogen, and oxygen atoms are the same on each side of the equation.

$x_1 = 6x_4$	carbon atoms
$2x_1 + x_2 = 2x_3 + 6x_4$	oxygen
$2x_2 = 12x_4$	hydrogen

An Example: Electrical Netw Matrices and Vectors in Mat Solving Linear Systems

1. An Example: Electrical Networks

2. Matrices and Vectors in MatLab

3. Solving Linear Systems

Matrix Multiplication

$$i_1 - i_2 + i_3 = 0$$

-i_1 + i_2 - i_3 = 0
$$4i_1 + 2i_2 = 8$$

$$2i_2 + 5i_3 = 9$$

node A node B top loop bottom loop

$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 4 & 2 & 0 \\ 0 & 2 & 5 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 8 \\ 9 \end{bmatrix}$$

$$A\mathbf{x} = \mathbf{b}$$

Matrix Multiplication

$$x_1 = 6x_4$$

$$2x_1 + x_2 = 2x_3 + 6x_4$$

$$2x_2 = 12x_4$$

carbon atoms oxygen hydrogen

$$\begin{bmatrix} 1 & 0 & 0 & -6 \\ 2 & 1 & 2 & 6 \\ 0 & 2 & 0 & 12 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A\mathbf{x} = \mathbf{0}$$

Creating Matrices

eye(4) % identity matrix
zeros(4) % matrix of zero elements
ones(4) % matrix of one elements

A=rand(8) triu(A) % upper triangular matrix tril(A) diag(A) % diagonal

Can you create this matrix in one line of code?

-5	0	0	0	0	0	0	1	1	1	1
0	-4	0	0	0	0	0	0	1	1	1
0	0	-3	0	0	0	0	0	0	1	1
0	0	0	-2	0	0	0	0	0	0	1
0	0	0	0	-1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	2	0	0	0
1	1	0	0	0	0	0	0	3	0	0
1	1	1	0	0	0	0	0	0	4	0
1	1	1	1	0	0	0	0	0	0	5

>> [eye(2), ones(2,3); zeros(2), [1:3;3:-1:1]] ans = 1 0 1 1 1 0 1 1 1 1 0 0 1 2 3 0 0 3 2 1

Matrix-Matrix Multiplication

In the product of two matrices A * B, the number of columns in A must equal the number of rows in B.

The product AB has the same number of rows as A and the same number of columns as B. For example

Exercise: create a small example to show that in general, $AB \neq BA$.

Matrix Operations

```
%% matrix operations
A * C % matrix multiplication
B = [5 6; 7 8; 9 10] * 100 % same dims as A
A .* B % element-wise multiplcation
\% A .* C or A * B gives error – wrong dimensions
A .^ 2
1./B
log(B) % functions like this operate element-wise on vecs or matrices
exp(B) % overflow
abs(B)
v = [-3:3] \% = [-3 - 2 - 1 \ 0 \ 1 \ 2 \ 3]
-v \% - 1 * v
v + ones(1, length(v))
\% v + 1 \% same
A' % (conjuate) transpose
```

Array Operations

• Addition/Subtraction: trivial

• Multiplication:

- of an array by a scalar is easily defined and easily carried out.
- of two arrays is not so straightforward: MATLAB uses two definitions of multiplication:
 - array multiplication (also called element-by-element multiplication)
 - matrix multiplication
- Division and exponentiation MATLAB has two forms on arrays.
 - element-by-element operations
 - matrix operations
 - \rightsquigarrow Remark:

the operation division by a matrix is not defined. In MatLab it is defined but it has other meanings.

Element-by-Element Operations

Symbol	Operation	Form	Examples
+	Scalar-array addition	A + b	[6,3]+2=[8,5]
-	Scalar-array subtraction	A - b	[8,3]-5=[3,-2]
+	Array addition	A + B	[6,5]+[4,8]=[10,13]
-	Array subtraction	A – B	[6,5]-[4,8]=[2,-3]
.*	Array multiplication	A.*B	[3,5].*[4,8]=[12,40]
./	Array right division	A./B	[2,5]./[4,8]=[2/4,5/8]
.\	Array left division	A.∖B	[2,5].\[4,8]=[2\4,5\8]
.^	Array exponentiation	A.^B	[3,5].^2=[3^2,5^2]
			2.^[3,5]=[2^3,2^5]

[3,5].^[2,4]=[3^2,5^4]

Backslash or Matrix Left Division

 $A \ B$ is roughly like INV(A)*B except that it is computed in a different way: X = $A \ B$ is the solution to the equation A*X = B computed by Gaussian elimination.

Slash or right matrix division:

A/B is the matrix division of B into A, which is roughly the same as A*INV(B), except it is computed in a different way. More precisely, $A/B = (B'\setminus A')'$.

Dot and Cross Products

dot(A,B) inner or scalar product: computes the projection of a vector on the other. eg. dot(Fr,r) computes component of force \mathbf{F} along direction \mathbf{r} //Inner product, generalization of dot product

v=1:10 u=11:20 u*v' % inner or scalar product ui=u+i ui' v*ui' % inner product of C^n norm(v,2) sqrt(v*v')

cross(A,B) cross product: eg: moment $\mathbf{M} = \mathbf{r} \times \mathbf{F}$

Exercise: Projectile trajectory

 \boldsymbol{p} position vector

$$oldsymbol{p}_t = oldsymbol{p}_0 + oldsymbol{u}_t s_m t + rac{oldsymbol{g} t^2}{2}$$

 s_m muzzle velocity (speed at which the projectile left the weapon) u_t is the direction the weapon was fired $g=-9.81 {\rm m s}^{-1}$

Predict the landing spot

$$t_{i} = \frac{-u_{i}s_{m} \pm \sqrt{u_{y}^{2}s_{m}^{2} - 2g_{y}(p_{y0} - p_{yt})}}{g_{y}} \qquad \mathbf{p}_{E} = \begin{bmatrix} p_{x0} + u_{x}s_{m}t_{i} \\ p_{y0} \\ p_{z0} + u_{z}s_{m}t_{i} \end{bmatrix}$$

Plot the trajectory in 2D.

Exercise: Projectile trajectory

Given a firing point S and s_m and a target point E, we want to know the firing direction u, |u| = 1.

$$E_{x} = S_{x} + u_{x}s_{m}t_{i} + \frac{1}{2}g_{x}t_{i}^{2}$$

$$E_{y} = S_{y} + u_{y}s_{m}t_{i} + \frac{1}{2}g_{y}t_{i}^{2}$$

$$E_{z} = S_{z} + u_{z}s_{m}t_{i} + \frac{1}{2}g_{z}t_{i}^{2}$$

$$1 = u_{x}^{2} + u_{y}^{2} + u_{z}^{2}$$

four eq. in four unknowns, leads to:

$$|\boldsymbol{g}|^2 t_i^4 - 4(\boldsymbol{g} \cdot \boldsymbol{\Delta} + s_m^2) t_i^2 + 4|\boldsymbol{\Delta}|^2 = 0, \qquad \boldsymbol{\Delta} = \boldsymbol{E} - \boldsymbol{S}$$

solve in t, and interpret the solution.

Reshaping

```
%% reshape and replication
A = magic(3) % magic square
A = [A [0;1;2]]
reshape(A,[4 3]) % columnwise
reshape(A,[2 6])
v = [100;0;0]
A+v
A + repmat(v,[1 4])
```

Eigenvalues and eigenvectors:

```
A = ones(6)
trace(A)
A = A - tril(A)-triu(A,2)
eig(A)
diag(ones(3,1),-1)
[V,D]=eig(diag(1:4))
rank(A) % rank of A
orth(A) % orthonormal basis
```

Visualizing Eigenvalues

A=[5/4,0;0,3/4]; eigshow(A) %effect of operator A on unit verctor

Outline

1. An Example: Electrical Networks

2. Matrices and Vectors in MatLab

3. Solving Linear Systems

Systems of Linear Equations

How many solutions have these linear systems? Find it out using the graphical approach.

$$\begin{array}{rcl} 6x-&10y=&2\\ 3x-&4y=&5 \end{array} \begin{array}{c} \medskip \$$

$$3x - 4y = 5$$

$$6x - 8y = 10$$

$$3x - 4y = 5$$
$$6x - 8y = 3$$

Systems of Linear Equations

$$6x - 10y = 2$$
$$3x - 4y = 5$$

% plot functions in implicit form ezplot('6*x-10*y=2',[0 10 0 10]), hold, ezplot('3*x-4*y=5',[0 10 0 10])

has one single solution

3x - 4y = 5 6x - 8y = 10 $ezplot('3*x-4*y=5', [0 \ 10 \ 0 \ 10]),$ $ezplot('6*x-8*y=10', [0 \ 10 \ 0 \ 10])$

has infinite solutions

3x - 4y = 5 6x - 8y = 3 $ezplot('3*x-4*y=5', [0 \ 10 \ 0 \ 10]),$ hold, $ezplot('6*x-8*y=3', [0 \ 10 \ 0 \ 10])$

has no solution

Matrix Form

The linear system:

can be expressed in vector-matrix form as:

 $\begin{bmatrix} 2 & 9 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$

In general, a set of m equations in n unknowns can be expressed in the form $A\mathbf{x} = \mathbf{b}$, where A is $m \times n$, \mathbf{x} is $n \times 1$ and \mathbf{b} is $m \times 1$.

The inverse of A is denoted A^{-1} and has property that

 $A^{-1}A = AA^{-1} = I$

Hence the solution to our system is:

 $\mathbf{x} = A^{-1}\mathbf{b}$

Compute the inverse and the determinant of this matrix in Matlab:

>> A=[3 -4; 6 -8];

Has the system solutions? What about the system in the previous slide? What are its solutions? A matrix is singular if det(A) = |A| = 0

Inverse of a square matrix A is defined only if A is nonsingular.

If A is singular, the system has no solution

```
>> A=[3 -4; 6 -8];
>> det(A)
ans =
0
>> inv(A)
Warning: Matrix is singular to working precision.
ans =
Inf Inf
Inf Inf
```

For a 2×2 matrix the matrix inverse is

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}^T = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

For a 3×3 matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

the matrix inverse is

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} & - \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} & + \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \begin{bmatrix} - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} & + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} & - \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} \\ + \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} & - \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} & + \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \end{bmatrix}^{T}$$

Calculating the inverse

 $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)$

adj(A) is the adjugate matrix of A:

- 1. Calculate the (i, j) minor of A, denoted M_{ij} , as the determinant of the $(n-1) \times (n-1)$ matrix that results from deleting row i and column j of A.
- 2. Calculate the cofactor matrix of A, as the $n\times n$ matrix C whose (i,j) entry is the (i,j) cofactor of A

 $C_{ij} = (-1)^{i+j} M_{ij}$

3. set $\operatorname{adj}(A)_{ij} = C_{ji}$

Left Division Method

- $\mathbf{x} = A^{-1}\mathbf{b}$ rarely applied in practice because calculation is likely to introduce numerical inaccuracy
- The inverse is calculated by LU decomposition, the matrix form of Gaussian elimination.

% left division method x = A b

A = LU	a_{11}	a_{12}	a_{13}		l_{11}	0	0]	u_{11}	u_{12}	u_{13}
DA = III	a_{21}	a_{22}	a_{23}	=	l_{21}	l_{22}	0	0	u_{22}	u_{23}
A = LU	a_{31}	a_{32}	a_{33}		l_{31}	l_{32}	l_{33}	0	0	u_{33}

• for a matrix A, $n \times n$, $det(A) \neq 0 \Leftrightarrow$ rank of A is n

- for a system $A\mathbf{x} = \mathbf{b}$ with m equations and n unknowns a solution exists iff $rank(A) = rank([A\mathbf{b}]) = r$
 - if $r = n \rightsquigarrow$ unique
 - if $r < n \rightsquigarrow$ infinite sol.
- for a homogeneous system $A\mathbf{x} = \mathbf{0}$ it is always rank(A) = rank([Ab]) and there is a nonzero solution iff rank(A) < n
- A\b works for square and nonsquare matrices. If nonsquare (m < n) then the system is undetermined (infinite solutions). A\b returns one variable to zero
- All does not work when det(A) = 0.

However since

```
rank(A) = rank([A\mathbf{b}])
```

an infinite number of solutions exist (undetermined system). x=pinv(A)b solves with pseudoinverse and rref([A,b]) finds the reduced row echelon form

Overdetermined Systems

An overdetermined system is a set of equations that has more independent equations than unknowns (m > n).

For such a system the matrix inverse method will not work because the A matrix is not square.

However, some overdetermined systems have exact solutions, and they can be obtained with the left division method x = A \setminus b

For other overdetermined systems, no exact solution exists. We need to check the ranks of A and [Ab] to know whether the answer is the exact solution. If a solution does not exist, the left-division answer is the least squares solution.

Flowchart for Linear System Solver

