
FF505/FY505

Computational Science

Lecture 3
Programming: Control Flow

Functions, Graphics

Marco Chiarandini (marco@imada.sdu.dk)

Department of Mathematics and Computer Science (IMADA)
University of Southern Denmark

Exercise: MC Simul.
Programming
Functions
GraphicsOutline

1. Exercise: Monte Carlo Simulation
Improving Performance

2. Programming

3. Functions
Exercise

4. Graphics
2D Plots
3D Plots

2

Exercise: MC Simul.
Programming
Functions
GraphicsResume

Overview of MATLAB environment

Overview of MATLAB programming and arrays

Linear Algebra in MATLAB
(Matrix and element-by-element operations)

Solving linear systems in MATLAB

3

Exercise: MC Simul.
Programming
Functions
GraphicsToday

Programming: Control structures

Writing your own Functions

Graphics: basic and advanced plotting

Efficiency issues

4

Exercise: MC Simul.
Programming
Functions
GraphicsOutline

1. Exercise: Monte Carlo Simulation
Improving Performance

2. Programming

3. Functions
Exercise

4. Graphics
2D Plots
3D Plots

5

Exercise: MC Simul.
Programming
Functions
GraphicsMonte Carlo Simulation

Calculate area by random rain:

6

Exercise: MC Simul.
Programming
Functions
GraphicsCalculate π

7

Exercise: MC Simul.
Programming
Functions
GraphicsSolution

Let As be the simulated area:

π

4
= As

� �
S=1000;
hits = 0;
for k = 1:S

x = rand(1);
y = rand(1);
P = x^2+y^2;
hits = P<1;

end
As=hits/S;
pi=4*As;� �

� �
S=1000;
XY=rand(S,2);
P=sum(XY.^2,2);
hits=sum(P<1);
As=hits/S;
pi=4*As;� �

8

Exercise: MC Simul.
Programming
Functions
GraphicsScript and Function Files (M-Files)

Script file� �
x=(1:1000)’;
for k=1:5
y(:,k)=k*log(x);

end
plot(x,y)� �
command line simple

does not take arguments
operates on data in the workspace

Function file� �
function y=simple(maxLoop)

% (smart indent)
x=(1:1000)’;
for k=1:maxLoop
y(:,k)=k*log(x);
end
plot(x,y)� �

command line g=simple(10)

can take input arguments and return
output arguments.
Internal variables are local to the
function

Same name conventions for .m files as for variables.
Check if variables or functions are already defined.� �
exist("example1")
exist("example1.m","file")
exist("example1","builtin")� �

� �
type fun� �

9

Exercise: MC Simul.
Programming
Functions
GraphicsScript and Function Files (M-files)

Modularize

Make interaction clear
make functions interact via arguments (in case structures) rather than
via global variables

Partitioning

Use existing functions
(http://www.mathworks.com/matlabcentral/fileexchange)

Any block of code appearing in more than one m-file should be
considered for packaging as a function

Subfunctions
packaged in the same file as their functions

Test scripts

10

http://www.mathworks.com/matlabcentral/fileexchange

Exercise: MC Simul.
Programming
Functions
GraphicsEfficient Code

� �
function mypi=calculate_pi_1(S)

hits = 0;
for k = 1:S

x = rand(1);
y = rand(1);
P = x^2+y^2;
hits = P<1;

end
As=hits/S;
mypi=4*As;� �

� �
function mypi=calculate_pi_2(S)

S=1000;
XY=rand(S,2);
P=sum(XY.^2,2);
hits=sum(P<1);
As=hits/S;
mypi=4*As;� �

� �
tic,
for k=1:100

calculate_pi_1(1000);
end
toc� �

� �
tic,
for k=1:100

calculate_pi_2(1000);
end
toc� �

11

Exercise: MC Simul.
Programming
Functions
GraphicsTechniques for Improving Performance

Can you improve performance and use memory more efficiently for this code?� �
A=rand(1000,400)>0.7
s=[]
M=0
for j=1:400

tmp_s=0
for i=1:1000

if A(i,j)>M
M=A(i,j)

end
if A(i,j)>0

tmp_s=tmp_s+A(i,j)
end
s=[s, tmp_s]

end� �

Use tic ... toc and whos to
analyse your code.
tic; bad; toc

For inspiration look at User’s Guide:
MATLAB > User’s Guide > Programming Fundamentals > Software Development > Performance

> Techniques for Improving Performance

13

Exercise: MC Simul.
Programming
Functions
GraphicsOutline

1. Exercise: Monte Carlo Simulation
Improving Performance

2. Programming

3. Functions
Exercise

4. Graphics
2D Plots
3D Plots

15

Exercise: MC Simul.
Programming
Functions
GraphicsAlgorithms and Control Structures

Algorithm: an ordered sequence of instructions that perform some task in a
finite amount of time.

Individual statements, instructions or function calls can be numbered and
executed in sequence, but an algorithm has the ability to alter the order of its
instructions. The order is referred to as control flow.

Three categories of control flow:

Sequential operations

Conditional operations: logical conditions that determine actions.

Iterative operations (loops)

For an imperative or a declarative program a control flow statement is a
statement whose execution results in a choice being made as to which of two
or more paths should be followed.

For non-strict functional languages (like Matlab), functions and language
constructs exist to achieve the same result, but they are not necessarily called
control flow statements (eg, vectorization).

16

Exercise: MC Simul.
Programming
Functions
GraphicsRelational Operators

< Less than.
<= Less than or equal to.
> Greater than.
>= Greater than or equal to.
== Equal to.
~= Not equal to.� �

islogical(5~=8)
ans =

1
islogical(logical(5+8))
ans =

1
>> logical(5+8)
ans =

1
>> double(6>8)
ans =

0
>> isnumeric(double(6>8))
ans =

1� �
17

Exercise: MC Simul.
Programming
Functions
GraphicsLogical Operators

~ NOT ~A returns an array the same dimension as A;
the new array has ones where A is zero and zeros
where A is nonzero.

& AND A & B returns an array the same dimension as
A and B; the new array has ones where both A
and B have nonzero elements and zeros where
either A or B is zero.

| OR A | B returns an array the same dimension as A
and B; the new array has ones where at least one
element in A or B is nonzero and zeros where A
and B are both zero.

&& Short-Circuit AND Operator for scalar logical expressions. A && B
returns true if both A and B evaluate to true,
and false if they do not.

|| Short-Circuit OR Operator for scalar logical expressions. A || B
returns true if either A or B or both evaluate to
true, and false if they do not.

18

Exercise: MC Simul.
Programming
Functions
GraphicsPrecedence

1. Parentheses; evaluated starting with the innermost pair.
2. Arithmetic operators and logical NOT (~); evaluated from left to right.
3. Relational operators; evaluated from left to right.
4. Logical AND.
5. Logical OR.

19

Exercise: MC Simul.
Programming
Functions
GraphicsThe if Statement

The if statement’s basic form is� �
if logical expression

statements
end� �

20

Exercise: MC Simul.
Programming
Functions
GraphicsThe else Statement

The basic structure for the use of the
else statement is� �
if logical expression

statement group 1
else

statement group 2
end� �

21

Exercise: MC Simul.
Programming
Functions
Graphics

� �
if logical expression 1

if logical expression 2
statements

end
end� �
can be replaced with the more concise program� �
if logical expression 1 & logical expression 2

statements
end� �

22

Exercise: MC Simul.
Programming
Functions
GraphicsThe elseif Statement

The general form of the if statement is� �
if logical expression 1

statement group 1
elseif logical expression 2

statement group 2
else

statement group 3
end� �

23

Exercise: MC Simul.
Programming
Functions
Graphicsfor Loops

A simple example of a for loop is� �
for k = 5:10:35

x = k^2
end� �

24

Exercise: MC Simul.
Programming
Functions
Graphicswhile Loops

� �
while logical expression

statements
end� �
The while loop is used when the
looping process terminates because a
specified condition is satisfied, and
thus the number of passes is not
known in advance.� �
x = 5;
while x < 25

disp(x)
x = 2*x - 1;

end� �
25

Exercise: MC Simul.
Programming
Functions
Graphicsswitch

� �
switch input expression % (can be a

scalar or string).
case value1

statement group 1
case value2

statement group 2
.
.
.
otherwise

statement group n
end� �

� �
switch angle

case 45
disp(’Northeast’)

case 135
disp(’Southeast’)

case 225
disp(’Southwest’)

case 315
disp(’Northwest’)

otherwise
disp(’Direction Unknown’)

end� �

26

Exercise: MC Simul.
Programming
Functions
GraphicsControl Flow

if� �
if w(1)==0

% <statement>
elseif w(1)==1

% <statement>
else

% <statement>
end� �
switch� �
method = ’Bilinear’;
switch lower(method)

case {’linear’,’bilinear’}
disp(’Method is linear’)

case ’cubic’
disp(’Method is cubic’)

case ’nearest’
disp(’Method is nearest’)

otherwise
disp(’Unknown method.’)

end� �

for� �
w = [];
z = 0;
is = 1:10
for i=is

w = [w, 2*i] % Same as \/
% w(i) = 2∗i
% w(end+1) = 2∗i

z = z + i;
% break;
% continue;

end
% avoid! same as w = 2∗[1:10], z = sum([1:10]);� �
while� �
w = [];
while length(w) < 3

w = [w, 4];
% break

end� �
27

Exercise: MC Simul.
Programming
Functions
GraphicsContinue and Break

The continue statement passes control to the next iteration of the for loop or
while loop in which it appears, skipping any remaining statements in the
body of the loop.
The break statement is used to exit early from a for loop or while loop. In
nested loops, break exits from the innermost loop only.

This will never end� �
while count <= 20

if true
continue

end
count = count + 1;

end� �

This will iterate once and stop� �
while count <= 20

if true
break

end
count = count + 1;

end� �

28

Exercise: MC Simul.
Programming
Functions
GraphicsVectorization

MATLAB is optimized for operations involving matrices and vectors.
Vectorization: The process of revising loop-based, scalar-oriented code to use
MATLAB matrix and vector operations

A simple example to create a table of logarithms:
loop-based, scalar-oriented code:� �
x = .01;
for k = 1:1001

y(k) = log10(x);
x = x + .01;

end� �

A vectorized version of the same
code is� �
x = .01:.01:10;
y = log10(x);� �

Some functions are vectorized, hence with vectors must use
element-by-element operators to combine them.
Eg: z = ey sinx, x and y vectors:� �
z=exp(y).*sin(x)� �

29

Exercise: MC Simul.
Programming
Functions
GraphicsVectorization

Vectorizing your code is worthwhile for:

Appearance: Vectorized mathematical code appears more like the
mathematical expressions found in textbooks, making the code easier to
understand.

Less Error Prone: Without loops, vectorized code is often shorter. Fewer
lines of code mean fewer opportunities to introduce programming errors.

Performance: Vectorized code often runs much faster than the
corresponding code containing loops.

30

Exercise: MC Simul.
Programming
Functions
GraphicsPreallocation

Another speedup techinque is preallocation. Memory allocation is slow.� �
r = zeros(32,1);
for n = 1:32

r(n) = rank(magic(n));
end� �
Without the preallocation MATLAB would enlarge the r vector by one
element each time through the loop.

31

Exercise: MC Simul.
Programming
Functions
GraphicsOutline

1. Exercise: Monte Carlo Simulation
Improving Performance

2. Programming

3. Functions
Exercise

4. Graphics
2D Plots
3D Plots

32

Exercise: MC Simul.
Programming
Functions
GraphicsUser-Defined Functions

The first line in a function file distinguishes a function M-file from a script
M-file. Its syntax is as follows:

function [output variables] = name(input variables)

The function name should be the same as the file name in which it is saved
(with the .m extension).

Example� �
function z = fun(x,y)
% the first line of comments is accessed by lookfor
% comments immediately following the definition
% are shown in help
u = 3*x;
z = u + 6*y.^2;� �

� �
q = fun(3,7)
q =

303� �
 variables have local scope

33

Exercise: MC Simul.
Programming
Functions
GraphicsVariable Scope

Local Variables: do not exist outside the function.� �
function z = fun(x,y)
u = 3*x;
z = u + 6*y.^2;� �

� �
>> x = 3; y = 7;
>> q = fun(x,y);
>> x
x =
3
>> y
y =
7
>> u
??? Undefined function or variable ’u’.� �

The variables x, y and u are local to the function fun

34

Exercise: MC Simul.
Programming
Functions
GraphicsLocal Variables

Local variables do not exist outside the function� �
>>x = 3;y = 7;
>>q = fun(x,y);
>>x
x =
3
>>y
y =
7
>>u
??? Undefined function or variable ’u’.� �

35

Exercise: MC Simul.
Programming
Functions
GraphicsLocal Variables

Variable names used in the function definition may, but need not, be used
when the function is called:
In fun.m� �
function z = fun(x,y)
x=x+1; %we increment x but x is local and

will not change globally
z=x+y;� �

At prompt� �
>> x=3;
>> z=fun(x,4)
>> x
x =

3� �
All variables inside a function are erased after the function finishes executing,
except when the same variable names appear in the output variable list used
in the function call.

36

Exercise: MC Simul.
Programming
Functions
GraphicsGlobal Variables

The global command declares certain variables global: they exist and have
the same value in the basic workspace and in the functions that declare them
global.� �
function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;� �

� �
>> global GRAVITY
>> GRAVITY = 32;
>> y = falling((0:.1:5)’);� �

Programming style guidelines recommend avoiding to use them.

37

Exercise: MC Simul.
Programming
Functions
GraphicsParameters and Arguments

Arguments passed by position Only
the order of the arguments is
important, not the names of the
arguments:� �
>> x = 7; y = 3;
>> z = fun(y, x)
z =

303� �
The second line is equivalent to z =
fun(3,7).

Inside the function variables nargin
and nargout tell the number of
input and output arguments involved
in each particular use of the function

One can use arrays as input
arguments:� �
>> r = fun(2:4,7:9)
r =

300 393 498� �
A function may have no input
arguments and no output list.� �
function show_date
clear
clc
today = date� �

38

Exercise: MC Simul.
Programming
Functions
GraphicsFunction Handles

A function handle is an address to reference a function.

It is declared via the @ sign before the function name.

Mostly used to pass the function as an argument to another function.

� �
function y = f1(x)
y = x + 2*exp(-x) - 3;� �� �

>> plot(0:0.01:6, @f1)� �

39

Exercise: MC Simul.
Programming
Functions
GraphicsExample: Finding zeros and minima

X = FZERO(FUN,X0) system function with syntax:� �
fzero(@function, x0) % zero close to x0
fminbnd(@function, x1, x2) % min between x1 and x2� �� �
fzero(@cos,2)
ans =

1.5708
>> fminbnd(@cos,0,4)
ans =

3.1416� �
Ex: plot and find the zeros and minima of y = x+ 2ex − 3

To find the minimum of a function of more than one variable� �
fminsearch(@function, x0)� �
where @function is a the handler to a function taking a vector and x0 is a
guess vector

40

Exercise: MC Simul.
Programming
Functions
GraphicsOther Ways

� �
>> fun1 = ’x.^2-4’;
>> fun_inline = inline(fun1);
>> [x, value] = fzero(fun_inline,[0, 3])� �� �
>> fun1 = ’x.^2-4’;
>> [x, value] = fzero(fun1,[0, 3])� �� �
>>[x, value] = fzero(’x.^2-4’,[0, 3])� �

41

Exercise: MC Simul.
Programming
Functions
GraphicsTypes of User-Defined Functions

The primary function is the first function of an M-file. Other are
subroutines not callable.

Subfunctions placed in the file of the primary function, not visible
outside the file

Nested functions defined within another function. Have access to
variables of the primary function.

Anonymous functions at the MATLAB command line or within another
function or script� �
% fhandle = @(arglist) expr
>> sq = @(x) (x.^2)
>> poly1 = @(x) 4*x.^2 - 50*x + 5;
>> fminbnd(poly1, -10, 10)
>> fminbnd(@(x) 4*x.^2 - 50*x + 5, -10, 10)� �
Overloaded functions are functions that respond differently to different
types of input arguments.

Private functions placed in a private folder and visible only to parent
folder

42

Exercise: MC Simul.
Programming
Functions
GraphicsFunction Arguments

Create a new function in a file named addme.m that accepts one or two
inputs and computes the sum of the number with itself or the sum of the two
numbers. The function must be then able to return one or two outputs (a
result and its absolute value).

44

Exercise: MC Simul.
Programming
Functions
GraphicsOutline

1. Exercise: Monte Carlo Simulation
Improving Performance

2. Programming

3. Functions
Exercise

4. Graphics
2D Plots
3D Plots

46

Exercise: MC Simul.
Programming
Functions
GraphicsIntroduction

Plot measured data (points) or functions (lines)
Two-dimensional plots or xy plots� �
help graph2d� �
Three-dimensional plots or xyz plots or
surface plots� �
help graph3d� �

47

Exercise: MC Simul.
Programming
Functions
GraphicsNomenclature xy plot

48

Exercise: MC Simul.
Programming
Functions
Graphics

An Example: y = sin(x)

� �
x = 0:0.1:52;
y = sin(x)
plot(x,y)
xlabel(’x’)
ylabel(’y’)
title(’The sine function’)� �

The autoscaling feature in MATLAB selects tick-mark spacing.

50

Exercise: MC Simul.
Programming
Functions
GraphicsPlotedit

But better to do this with lines of code, just in case you have to redo the plot.
51

Exercise: MC Simul.
Programming
Functions
GraphicsSaving Figures

The plot appears in the Figure window. You can include it in your
documents:

1. type
print -dpng foo
at the command line. This command sends the current plot directly to
foo.png

 help print

2. from the File menu, select Save As, write the name and select file format
from Files of Types (eg, png, jpg, etc)
.fig format is MATLAB format, which allows to edit

3. from the File menu, select Export Setup to control size and other
parameters

4. on Windows, copy on clipboard and paste. From Edit menu, Copy
Figure and Copy Options

52

Exercise: MC Simul.
Programming
Functions
GraphicsThe grid and axis Commands

grid command to display gridlines at the tick marks corresponding to
the tick labels.
grid on to add gridlines;
grid off to stop plotting gridlines;
grid to toggle

axis command to override the MATLAB selections for the axis limits.
axis([xmin xmax ymin ymax]) sets the scaling for the x- and y-axes
to the minimum and maximum values indicated. Note: no separating
commas
axis square, axis equal, axis auto

53

Exercise: MC Simul.
Programming
Functions
Graphics

plot complex numbers� �
y=0.1+0.9i, plot(y)
z=0.1+0.9i, n=0:0.01:10,
plot(z.^n), xlabels(’Real’), ylabel(’Imaginary’)� �
function plot command� �
f=@(x) (cos(tan(x))-tan(sin(x)));
fplot(f,[1 2])
[x,y]=fplot(function,limits)� �
plotting polynomials
Eg, f(x) = 9x3 − 5x2 + 3x+ 7 for
−2 ≤ x ≤ 5:� �
a = [9,-5,3,7];
x = -2:0.01:5;
plot(x,polyval(a,x)),xlabel(’x’),ylabel(’f(x)’)� �

54

Exercise: MC Simul.
Programming
Functions
GraphicsSubplots

subplot command to obtain several smaller subplots in the same figure.

subplot(m,n,p) divides the Figure window into an array of rectangular
panes with m rows and n columns and sets the pointer after the pth pane.

� �
x = 0:0.01:5;
y = exp(-1.2*x).*sin(10*x+5);
subplot(1,2,1)
plot(x,y),axis([0 5 -1 1])
x = -6:0.01:6;
y = abs(x.^3-100);
subplot(1,2,2)
plot(x,y),axis([-6 6 0 350])� �

55

Exercise: MC Simul.
Programming
Functions
GraphicsData Markers and Line Types

Three components can be specified in the string specifiers along with the
plotting command. They are:

Line style

Marker symbol

Color� �
plot(x,y,u,v,’--’) % where the symbols ’−−’ represent a dashed line
plot(x,y,’*’,x,y,’:’) % plot y versus x with asterisks connected with a dotted line
plot(x,y,’g*’,x,y,’r--’) % green asterisks connected with a red dashed line� �� �
% Generate some data using the besselj
x = 0:0.2:10;
y0 = besselj(0,x);
y1 = besselj(1,x);
y2 = besselj(2,x);
y3 = besselj(3,x);
y4 = besselj(4,x);
y5 = besselj(5,x);
y6 = besselj(6,x);

plot(x, y0, ’r+’, x, y1, ’go’, x, y2, ’b*’,
x, y3, ’cx’, ...

x, y4, ’ms’, x, y5, ’yd’, x, y6, ’kv’);� � 56

Exercise: MC Simul.
Programming
Functions
Graphics

� �
doc LineSpec� �

57

Exercise: MC Simul.
Programming
Functions
GraphicsLabeling Curves and Data

The legend command automatically obtains the line type used for each data
set� �
x = 0:0.01:2;
y = sinh(x);
z = tanh(x);
plot(x,y,x,z,’--’),xlabel(’x’)
ylabel(’Hyperbolic Sine and Tangent’)
legend(’sinh(x)’,’tanh(x)’)� �

58

Exercise: MC Simul.
Programming
Functions
GraphicsThe hold Command and Text Annotations

� �
x=-1:0.01:1
y1=3+exp(-x).*sin(6*x);
y2=4+exp(-x).*cos(6*x);
plot((0.1+0.9i).^(0:0.01:10)), hold, plot(y1,y2)
gtext(’y2 versus y1’) % places in a point specified by the mouse
gtext(’Img(z) versus Real(x)’,’FontName’,’Times’,’Fontsize’,18)� �

� �
text(’Interpreter’,’latex’,...
’String’,...
’$(3+e^{-x}\sin({\it 6x}),4+e^{-x}\cos({\

it 6x}))$’,...
’Position’,[0,6],...
’FontSize’,16)� �
Search Text Properties in Help
Search Mathematical symbols, Greek
Letter and TeX Characters

59

Exercise: MC Simul.
Programming
Functions
GraphicsAxes Transformations

Instead of plot, plot with� �
loglog(x,y) % both scales logarithmic.
semilogx(x,y) % x scale logarithmic and the y scale rectilinear.
semilogy(x,y) % y scale logarithmic and the x scale rectilinear.� �

60

Exercise: MC Simul.
Programming
Functions
GraphicsLogarithmic Plots

Remember:

1. You cannot plot negative numbers on a log scale: the logarithm of a
negative number is not defined as a real number.

2. You cannot plot the number 0 on a log scale: log10 0 = −∞.

3. The tick-mark labels on a log scale are the actual values being plotted;
they are not the logarithms of the numbers. Eg, the range of x values in
the plot before is from 10−1 = 0.1 to 102 = 100.

4. Gridlines and tick marks within a decade are unevenly spaced. If 8
gridlines or tick marks occur within the decade, they correspond to
values equal to 2, 3, 4, . . . , 8, 9 times the value represented by the first
gridline or tick mark of the decade.

5. Equal distances on a log scale correspond to multiplication by the same
constant (as opposed to addition of the same constant on a rectilinear
scale).

61

Exercise: MC Simul.
Programming
Functions
GraphicsThe effect of log-transformation

62

Exercise: MC Simul.
Programming
Functions
GraphicsSpecialized plot commands

Command Description
bar(x,y) Creates a bar chart of y versus x
stairs(x,y) Produces a stairs plot of y versus x.
stem(x,y) Produces a stem plot of y versus x.

63

Exercise: MC Simul.
Programming
Functions
Graphics

Command Description
plotyy(x1,y1,x2,y2) Produces a plot with two y-axes, y1 on

the left and y2 on the right
polar(theta,r,’type’) Produces a polar plot from the polar co-

ordinates theta and r, using the line type,
data marker, and colors specified in the
string type.

64

Exercise: MC Simul.
Programming
Functions
GraphicsScatter Plots

� �
load count.dat
scatter(count(:,1),count(:,2),

’r*’)
xlabel(’Number of Cars on

Street A’);
ylabel(’Number of Cars on

Street B’);� �

65

Exercise: MC Simul.
Programming
Functions
GraphicsError Bar Plots

� �
load count.dat;
y = mean(count,2);
e = std(count,1,2);
figure
errorbar(y,e,’xr’)� �

66

Exercise: MC Simul.
Programming
Functions
GraphicsSplines

Add interpolation

� �
x=1:24
y=count(:,2)
xx=0:.25:24
yy=spline(x,y,xx)
plot(x,y,’o’,xx,yy)� �

67

Exercise: MC Simul.
Programming
Functions
GraphicsThree-Dimensional Line Plots

Plot in 3D the curve: x = e−0.05t sin(t), y = e−0.05t cos(t), z = t� �
t = 0:pi/50:10*pi;
plot3(exp(-0.05*t).*sin(t), exp(-0.05*t).*cos(t), t)
xlabel(’x’), ylabel(’y’), zlabel(’z’), grid� �

69

Exercise: MC Simul.
Programming
Functions
GraphicsSurface Plots

Surface plot of the function z = xe−[(x−y2)2+y2], for −2 ≤ x ≤ 2 and
−2 ≤ y ≤ 2 with a spacing of 0.1� �
[X,Y] = meshgrid(-2:0.1:2);
Z = X.*exp(-((X-Y.^2).^2+Y.^2));
mesh(X,Y,Z), xlabel(’x’), ylabel(’y’), zlabel(’z’)� �

70

Exercise: MC Simul.
Programming
Functions
GraphicsContour Plots

Contour plot of the function z = xe−[(x−y2)2+y2], for −2 ≤ x ≤ 2 and
−2 ≤ y ≤ 2 with a spacing of 0.1� �
[X,Y] = meshgrid(-2:0.1:2);
Z = X.*exp(-((X-Y.^2).^2+Y.^2));
contour(X,Y,Z), xlabel(’x’), ylabel(’y’)� �

71

Exercise: MC Simul.
Programming
Functions
GraphicsThree-Dimensional Plotting Functions

Function Description
contour(x,y,z) Creates a contour plot.
mesh(x,y,z) Creates a 3D mesh surface plot.
meshc(x,y,z) Same as mesh but draws contours under

the surface.
meshz(x,y,z) Same as mesh but draws vertical refer-

ence lines under the surface.
surf(x,y,z) Creates a shaded 3D mesh surface plot.
surfc(x,y,z) Same as surf but draws contours under

the surface.
[X,Y] = meshgrid(x,y) Creates the matrices X and Y from the

vectors x and y to define a rectangular
grid.

[X,Y] = meshgrid(x) Same as [X,Y]= meshgrid(x,x).
waterfall(x,y,z) Same as mesh but draws mesh lines in

one direction only.

72

Exercise: MC Simul.
Programming
Functions
Graphics

a) mesh, b) meshc, c) meshz, d) waterfall

73

Exercise: MC Simul.
Programming
Functions
GraphicsVector fields

Use quiver to display an arrow at each data point in x and y such that the
arrow direction and length represent the corresponding values of the vectors u
and v.

� �
[x,y] = meshgrid(0:0.2:2,0:0.2:2);
u = cos(x).*y;
v = sin(x).*y;

figure
quiver(x,y,u,v)� �

74

Exercise: MC Simul.
Programming
Functions
GraphicsVector fields

Projectile Path Over Time - quiver3

p(t) = vt+
at2

2xy
z

 =

vxvy
vz

 t+
1

2

ax

ay

az

 t2

=

 2
3
10

 t+
1

2

 0
0

−32

 t2

� �
vz = 10; % velocity constant
a = -32; % acceleration constant
% Calculate z as the height as time varies

from 0 to 1.
t = 0:.1:1;
z = vz*t + 1/2*a*t.^2;
% Calculate the position in the x−

direction and y−direction.
vx = 2;
x = vx*t;
vy = 3;
y = vy*t;
% Compute the components of the velocity

vectors and display the vectors
u = gradient(x);
v = gradient(y);
w = gradient(z);
scale = 0;

figure
quiver3(x,y,z,u,v,w,scale)
% Change the viewpoint of the axes to

[70,18].
view([70,18])� �

75

Exercise: MC Simul.
Programming
Functions
GraphicsGuidelines for Making Plots

Should the experimental setup from the exploratory phase be redesigned to
increase conciseness or accuracy?

What parameters should be varied? What variables should be measured?

How are parameters chosen that cannot be varied?

Can tables be converted into curves, bar charts, scatter plots or any other
useful graphics?

Should tables be added in an appendix?

Should a 3D-plot be replaced by collections of 2D-curves?

Can we reduce the number of curves to be displayed?

How many figures are needed?

Should the x-axis be transformed to magnify interesting subranges?

76

Should the x-axis have a logarithmic scale? If so, do the x-values used
for measuring have the same basis as the tick marks?

Make sure the each axis is labeled with the name of the quantity being
plotted and its units.

Make tick marks regularly paced and easy to interpret and interpolate,
eg, 0.2, 0.4, rather than 0.23, 0.46

Use the same scale limits and tick spacing on each plot if you need to
compare information on more than one plot.

Is the range of x-values adequate?

Do we have measurements for the right x-values, i.e., nowhere too dense
or too sparse?

Should the y-axis be transformed to make the interesting part of the
data more visible?

Should the y-axis have a logarithmic scale?

Is it misleading to start the y-range at the smallest measured value?
(if not too much space wasted start from 0)

Clip the range of y-values to exclude useless parts of curves?

Exercise: MC Simul.
Programming
Functions
Graphics

Can we use banking to 45o?

Are all curves sufficiently well separated?

Can noise be reduced using more accurate measurements?

Are error bars needed? If so, what should they indicate? Remember that
measurement errors are usually not random variables.

Connect points belonging to the same curve.

Only use splines for connecting points if interpolation is sensible.

Do not connect points belonging to unrelated owners.

Use different point and line styles for different curves.

Use the same styles for corresponding curves in different graphs.

Place labels defining point and line styles in the right order and without
concealing the curves.

78

Exercise: MC Simul.
Programming
Functions
Graphics

Captions should make figures self contained.

Give enough information to make experiments reproducible.

Golden ratio rule: make the graph wider than higher [Tufte 1983].

Rule of 7: show at most 7 curves (omit those clearly irrelevant).

Avoid: explaining axes, connecting unrelated points by lines, cryptic
abbreviations, microscopic lettering, pie charts

79

Exercise: MC Simul.
Programming
Functions
GraphicsDemos

Try!� �
demo ’matlab’� �

80

Exercise: MC Simul.
Programming
Functions
GraphicsSummary

Overview of MATLAB environment

Overview of MATLAB programming and arrays

Linear Algebra in MATLAB
(Matrix and element-by-element operations)

Solving linear systems in MATLAB

Programming: Control structures

Writing your own Functions

Graphics: basic and advanced plotting

Efficiency issues

81

	Exercise: Monte Carlo Simulation
	Improving Performance

	Programming
	Functions
	Exercise

	Graphics
	2D Plots
	3D Plots

