FF505/FY505

Computational Science

Lecture 3
Programming: Control Flow
Functions, Graphics

Marco Chiarandini (marco@imada.sdu.dk)

Department of Mathematics and Computer Science (IMADA)
University of Southern Denmark

Exercise: MC Simul
Programming
Functions

Outline Graphics

1. Exercise: Monte Carlo Simulation
Improving Performance

2. Programming

3. Functions
Exercise

4. Graphics
2D Plots
3D Plots

Resume

@ Overview of MATLAB environment
@ Overview of MATLAB programming and arrays

o Linear Algebra in MATLAB
(Matrix and element-by-element operations)

@ Solving linear systems in MATLAB

Today

@ Programming: Control structures
@ Writing your own Functions
@ Graphics: basic and advanced plotting

o Efficiency issues

Outline

1. Exercise: Monte Carlo Simulation
Improving Performance

Exercise: MC Simul.
Programming
Functions

Graphics

Exercise: MC Simul.
Programming
Functions

Monte Carlo Simulation Crmehier

Calculate area by random rain:

Exercise: MC Simul.
Programming
Functions

Calculate =« Cinchier

Solution

Let A, be the simulated area:

Exercise: MC Simul.

Programming
Functions
Graphics

— = A,
4
) (
$=1000; | 8=1000;
hits = 0; | XY=rand(s,2);
for k = 1:8 | P=sum(XY."2,2);
x = rand(1); | hits=sum(P<1) ;
y = rand(1); | As=hits/S;
P = x"2+y"2; ‘ pi=4*As;
hits = P<1;
end
As=hits/S;
pi=4x*As;
J

Script and Function Files (M-Files)

Exercise: MC Simul.

Programming
Functions
Graphics

Script file Function file

/ N

| x=(1:1000)"; \ \ function y=simple(maxLoop)

| for k=1:5 [| % (smart indent)

\ y(,k)=kxlog(x); [| x=(1:1000) >;

| en [| for k=1:maxLoop

‘ plot (x,y) ‘ ‘ y(:,k)=kxlog(x);
/| end

command line simple L plot(x,y)

does not take arguments

output arguments.

d o th ! command line g=simp1e(10)
operates on data in the workspace can take input arguments and return

Internal variables are local to the

function

Same name conventions for .m files as for variables.
Check if variables or functions are already defined.

(
exist("examplel") Ltype fun

exist("examplel.m","file")

)
exist("examplel","builtin") ‘

\
\
\
-

~_/

Exercise: MC Simul.

Programming
Functions

Script and Function Files (M-files) Graphics

Modularize

Make interaction clear
make functions interact via arguments (in case structures) rather than
via global variables

Partitioning

Use existing functions
(http://wuw.mathworks.com/matlabcentral/fileexchange)

Any block of code appearing in more than one m-file should be
considered for packaging as a function

Subfunctions
packaged in the same file as their functions

Test scripts

10

http://www.mathworks.com/matlabcentral/fileexchange

Efficient Code

Exercise: MC Simul.

Programming
Functions
Graphics

function mypi=calculate_pi_1(S) \ function mypi=calculate_pi_2(S)
hits = 0; | $=1000;
for k = 1:8 | XY=rand(s,2);
x = rand(1); ‘ P=sum(XY."2,2);
y = rand(1); \ hits=sum(P<1);
P = x"2+y"2; \ As=hits/S;
hits = P<1; | mypi=4xAs;
end
As=hits/S;
mypi=4*As;
tic, \ tic,
for k=1:100 | for k=1:100
calculate_pi_1(1000); \ calculate_pi_2(1000);
end | end
toc ‘ toc

11

Techniques for Improving Performance

Exercise: MC Simul.
Programming
Functions

Graphics

Can you improve performance and use memory more efficiently for this code?

A=rand (1000,400)>0.7
s=[]
M=0
for j=1:400
tmp_s=0
for i=1:1000
if A(i,j)>M
M=A(i,j)
end
if A(i,j)>0
tmp_s=tmp_s+A(i,]j)
end
s=[s, tmp_s]
end

\

For inspiration look at User's Guide:

Use tic toc and whos to
analyse your code.
tic; bad; toc

MATLAB > User's Guide > Programming Fundamentals > Software Development > Performance

> Techniques for Improving Performance

& » MATLAB » User's Guide » Programming Fundamentals » Software Dewelopment » Performance » Technigues for Improving Performance »

13

Outline

2. Programming

Exercise: MC Simul.
Programming
Functions

Graphies

15

Programming

Algorithms and Control Structures
Algorithm: an ordered sequence of instructions that perform some task in a
finite amount of time.

Individual statements, instructions or function calls can be numbered and
executed in sequence, but an algorithm has the ability to alter the order of its
instructions. The order is referred to as control flow.

Three categories of control flow:

@ Sequential operations
@ Conditional operations: logical conditions that determine actions.

o lterative operations (loops)

For an imperative or a declarative program a control flow statement is a
statement whose execution results in a choice being made as to which of two
or more paths should be followed.

For non-strict functional languages (like Matlab), functions and language
constructs exist to achieve the same result, but they are not necessarily called
control flow statements (eg, vectorization).

16

Relational Operators

< Less than.
<= Less than or equal to.
> Greater than.

>= Greater than or equal to.

== Equal to.
= Not equal to.

islogical(57=8)
ans =

1
islogical(logical(5+8))
ans =

1
>> logical(5+8)
ans =
1
>> double(6>8)
ans =
0
>> isnumeric(double(6>8))
ans =
1

Exercise: MC Simul
Programming
Functions

Graphics

17

Logical Operators

&&

NOT

AND

OR

Short-Circuit AND

Short-Circuit OR

Programming

~A returns an array the same dimension as A;
the new array has ones where A is zero and zeros
where A is nonzero.

A & B returns an array the same dimension as
A and B; the new array has ones where both A
and B have nonzero elements and zeros where
either A or B is zero.

A | Breturns an array the same dimension as A
and B; the new array has ones where at least one
element in A or B is nonzero and zeros where A
and B are both zero.

Operator for scalar logical expressions. A && B
returns true if both A and B evaluate to true,
and false if they do not.

Operator for scalar logical expressions. A || B
returns true if either A or B or both evaluate to
true, and false if they do not.

18

Programming

Precedence

ok w

Parentheses; evaluated starting with the innermost pair.

Arithmetic operators and logical NOT (~); evaluated from left to right.
Relational operators; evaluated from left to right.

Logical AND.

Logical OR.

19

The if Statement

The if statement’s basic form is

\ if logical expression
| statements
| end

S

Start

True

Logical
Expression

State

ments

Exercise: MC Simul
Programming
Functions

Graphics

End

20

The else Statement

The basic structure for the use of the

else

statement is

if logical expression

statement group 1

statement group 2

Exercise: MC Simul
Programming
Functions

Graphics
Start
Logical
Expression
Statement Statement
Group 1 Group 2
End

21

‘ if logical expression 1

\ if logical expression 2
\ statements

| end

‘ end

can be replaced with the more concise program

‘ if logical expression 1 & logical expression 2
statements
‘ end

Exercise: MC Simul
Programming
Functions

Graphics

22

Exercise: MC Simul
Programming
Functions

The elseif Statement Crmshion

The general form of the if statement is

p
‘ if logical expression 1

‘ statement group 1

| elseif logical expression 2
\ statement group 2

\
\
\

else

Logical

statement group 3 Expression 1

\
\
\
\
\
\
end J

Statement Logical
Group 1 Expression 2
Statement
Group 3
Statement
Group 2
End

23

for Loops

A simple example of a for loop is

Exercise: MC Simul
Programming
Functions

Graphics

Incre

Statements

]

End

Statements
following
the End
statement

24

while Loops

while logical expression
statements
end

The while loop is used when the
looping process terminates because a
specified condition is satisfied, and
thus the number of passes is not
known in advance.
x = 5;
while x < 25

disp(x)

X = 2%x - 1;
end

Start

Logical
Expression

Statements
(which increment
the loop variable)

I

Programming

End

Statements
following
the End
statement

25

switch

Exercise: MC Simul
Programming
Functions

Graphics

switch input expression % (can be a
scalar or string).
case valuel
statement group 1
case value2
statement group 2

otherwise
statement group n

end

switch angle
case 45
disp(’Northeast?’)
case 135
disp(’Southeast’)
case 225
disp(’Southwest’)
case 315
disp(’Northwest’)
otherwise

disp(’Direction Unknown’)

end

26

Control Flow

Exercise: MC Simul
Programming
Functions

Graphics

if for
if w(1)== w = [];
% <statement> z = 0;
elseif w(l)== is = 1:10
% <statement> for i=is
else w = [w, 2%xi] % Same as |/
% <statement> % w(i) = 2%
end % w(end+1) = 2%i
z =2z + 1i;
switch 7 et

method = ’Bilinear’;
switch lower (method)
case {’linear’,’bilinear’}
disp(’Method is linear’)
case ’cubic’
disp(’Method is cubic’)
case ’nearest’
disp(’Method is nearest’)
otherwise
disp(’Unknown method.’)
end

% continue;
end

% avoid! same as w = 2x[1:10], z = sum([1:10]);

while

w=[1;

while length(w) < 3
w = [w, 4];
% break

end

27

Programming

Continue and Break

The continue statement passes control to the next iteration of the for loop or
while loop in which it appears, skipping any remaining statements in the
body of the loop.

The break statement is used to exit early from a for loop or while loop. In
nested loops, break exits from the innermost loop only.

This will never end This will iterate once and stop
while count <= 20 while count <= 20
if true if true
continue break
end end
count = count + 1; count = count + 1;

end end

28

Programming

Vectorization

MATLARB is optimized for operations involving matrices and vectors.
Vectorization: The process of revising loop-based, scalar-oriented code to use
MATLAB matrix and vector operations

A simple example to create a table of logarithms:

loop-based, scalar-oriented code: A vectorized version of the same
code is
x = .01;
for k = 1:1001 _ . an.
y(&) = 1ogl0(x); - iglié‘zg?o’
x =x + .01; y g 5
end

Some functions are vectorized, hence with vectors must use
element-by-element operators to combine them.
Eg: z = eYsinx, 2 and y vectors:

z=exp(y) .*sin(x)

29

Programming

Vectorization

Vectorizing your code is worthwhile for:
@ Appearance: Vectorized mathematical code appears more like the

mathematical expressions found in textbooks, making the code easier to
understand.

@ Less Error Prone: Without loops, vectorized code is often shorter. Fewer
lines of code mean fewer opportunities to introduce programming errors.

o Performance: Vectorized code often runs much faster than the
corresponding code containing loops.

30

Exercise: MC Simul
Programming
Functions

Preallocation st

Another speedup techinque is preallocation. Memory allocation is slow.

r = zeros(32,1);
for n = 1:32
r(n) = rank(magic(n));

p
|
\
| end
N

Without the preallocation MATLAB would enlarge the r vector by one
element each time through the loop.

31

Outline

3. Functions
Exercise

Exercise: MC Simul.
Programming
Functions

Graphics

32

Exercise: MC Simul
Programming
Functions

User-Defined Functions Graphice

The first line in a function file distinguishes a function M-file from a script
M-file. Its syntax is as follows:

function [output variables] = name(input variables)

The function name should be the same as the file name in which it is saved
(with the .m extension).

function z = fun(x,y) | q = fun(3,7)
q=

% the first line of comments is accessed by lookfor |

A

e A

| |

‘ % comments immediately following the definition ‘ ‘ 303
| % are shown in help | ©

; ;

N J

~ variables have local scope

33

Exercise: MC Simul
Programming
Functions

Variable Scope Gramhie

Local Variables: do not exist outside the function.

‘function z = fun(x,y) ‘ > x=3;y=T;
| u = 3*x; >> q = fun(x,y);
|z =u + 6xy."2; | > =

>> u
??? Undefined function or variable ’u’.

The variables x, y and u are local to the function fun

34

Local Variables

Local variables do not exist outside the function

>>q
>>x
x =
3

>>y
y =
7

>>u
?7?

>>x =

S8 S 18
= fun(x,y);

Undefined function or variable ’u’.

Exercise: MC Simul
Programming
Functions

Graphics

35

- Functions
Local Variables

Variable names used in the function definition may, but need not, be used
when the function is called:

In fun.m At prompt
function z = fun(x,y) >> x=3;
x=x+1; %we increment x but x is local and >> z=fun(x,4)
will not change globally >> x
Z=x+y; x =
3

All variables inside a function are erased after the function finishes executing,

except when the same variable names appear in the output variable list used
in the function call.

36

Exercise: MC Simul

Programming

- Functions
Global Variables Cometier

The global command declares certain variables global: they exist and have
the same value in the basic workspace and in the functions that declare them
global.

e

| function h = falling(t) || >> global GRAVITY \
| global GRAVITY || >> GRAVITY = 32; \
| h = 1/2*%GRAVITY*t."2; || > y = f£alling((0:.1:5)°); \
{ \ 4

Programming style guidelines recommend avoiding to use them.

37

Parameters and Arguments

Arguments passed by position Only
the order of the arguments is
important, not the names of the
arguments:

> x =7; 5y =3;
>> z = fun(y, x)
z =

303

The second line is equivalent to z =
fun(3,7).

Functions

Inside the function variables nargin
and nargout tell the number of

input and output arguments involved
in each particular use of the function

One can use arrays as input
arguments:
>> r = fun(2:4,7:9)

r =
300 393 498

A function may have no input
arguments and no output list.

function show_date
clear

cle

today = date

38

Exercise: MC Simul
Programming
Functions

Function Handles Cometier

@ A function handle is an address to reference a function.
o It is declared via the @ sign before the function name.

@ Mostly used to pass the function as an argument to another function.

(N
‘ function y = £1(x) ‘ -

|y = x + 2xexp(-x) - 3; J L>> plot(0:0.01:6, @f1)
N\

—/

39

Exercise: MC Simul
Programming
Functions

Example: Finding zeros and minima Graphics

X = FZERO(FUN,X0) system function with syntax:

fzero(@function, x0) % zero close to z0
fminbnd (@function, x1, x2) % min between x1 and x2

fzero(Qcos,2)
ans =
1.5708
>> fminbnd(@cos,0,4)
ans =
3.1416

Ex: plot and find the zeros and minima of y = 2 + 2¢* — 3

To find the minimum of a function of more than one variable

| fminsearch(@function, x0) ‘
. J

where @function is a the handler to a function taking a vector and 7 is a
guess vector

40

Other Ways

[>> funt = ’x.~2-47;
| >> fun_inline = inline(funi);
‘>> [x, value] = fzero(fun_inline, [0, 3])

‘ >> funl = ’x.72-4;
‘>> [x, value] = fzero(funi, [0, 3])

[»[x, value] = fzero(’x.~2-4’,[0, 3])

Exercise: MC Simul.
Programming
Functions

Graphics

41

Functions

Types of User-Defined Functions

@ The primary function is the first function of an M-file. Other are
subroutines not callable.

o Subfunctions placed in the file of the primary function, not visible
outside the file

@ Nested functions defined within another function. Have access to
variables of the primary function.

@ Anonymous functions at the MATLAB command line or within another
function or script
% fhandle = @(arglist) expr
>> sq = 0(x) (x.72)
>> polyl = Q@(x) 4*x.72 - 50*x + 5;

>> fminbnd(polyl, -10, 10)
>> fminbnd(@(x) 4*x.~2 - 50*x + 5, -10, 10)

o Overloaded functions are functions that respond differently to different
types of input arguments.

@ Private functions placed in a private folder and visible only to parent
folder

Functions

Function Arguments

Create a new function in a file named addme.m that accepts one or two
inputs and computes the sum of the number with itself or the sum of the two
numbers. The function must be then able to return one or two outputs (a
result and its absolute value).

a4

Outline

4. Graphics
2D Plots
3D Plots

Exercise: MC Simul
Programming
Functions

Graphics

46

Exercise: MC Simul
Programming
Functions

Introduction Graphics

Plot measured data (points) or functions (lines)

Two-dimensional plots or xy plots

-/

| help graph2d
&

Three-dimensional plots or xyz plots or
surface plots

-/

-
| help graph3d
(&

a7

Exercise: MC Simul
Programming
Functions

Nomenclature xy plot Graphics

PLOT TITLE%
Height of a Falling Object Versus Time

DATA SYMBOL
1400

1200

1000+
LEGEND]

—— Zero Drag Model
© Data

800

Height (feet)

600

400

TICK MARK
200

o L L ' " ' '
o] 1 2 3 4 5 6

Time (seconds)

0+

TICK-MARK LABEL
AXIS LABEL

An Example: y = sin(x)

The sine function

Exercise: MC Simul
Programming
Functions

Graphics

|
| x = 0:0.1:52; 0.5"“\Hw

‘ y = sin(x)

1
| plot(x,y) } I] I
| xlabel(’x’) ‘ > \‘ ‘ “ SRy ‘ I] f] |
| ylabel(’y?) ‘ ‘] Ry | (| RER I (
‘ title(’The sine function?’) J ‘ ; ! I] | ‘ | \ | \ | ‘ |
05 ‘\‘ ‘\‘ ‘\\ wf‘ ‘f‘ ‘I ‘1\1
\.f ‘\;J ‘\;‘I ‘\/ v I
o 10 20 30 20 50 60

The autoscaling feature in MATLAB selects tick-mark spacing.

50

Plotedit

But better to do this with lines of code, just in case you have to redo the plot.

To start plot edit mode, click
this button.

Use the Edit, Insert,
and Tools menus fo add

Graphics

Use these toolbar butions to add a kegend, text, and arrows.

Fle Edt Vew Infert Took

Desktop Window Helpy /

Dedsg |k faa® ¢ 0 i}

obieds or edit existing £ OO0\~ X" +4p
abiects ina graph. Lotka Volterra Predator-Prey Population Model
250
Double-click on an object
toselect it Bl
[Many predators; @z
250 prey population Copy
» will decline g
Position labeks, legends, a CZ:’E
" 5 200
andher by S
dicking and dragging. 2 lne syl b
2 150 Marker b
o Few prﬁaltu‘vs: Marker Sze b
. " prey population
Acess ob!ecl-spcqf[plot - ity Propertes
edit functions through show M-cade
context-sensitive pop-up o
menus.

Timet (Years)

51

Saving Figures Graphics

The plot appears in the Figure window. You can include it in your
documents:

1. type
print -dpng foo
at the command line. This command sends the current plot directly to
foo.png

~> help print

2. from the File menu, select Save As, write the name and select file format
from Files of Types (eg, png, jpg, etc)
fig format is MATLAB format, which allows to edit

3. from the File menu, select Export Setup to control size and other
parameters

4. on Windows, copy on clipboard and paste. From Edit menu, Copy
Figure and Copy Options

52

The grid and axis Commands Graphics

o grid command to display gridlines at the tick marks corresponding to
the tick labels.
grid on to add gridlines;
grid off to stop plotting gridlines;
grid to toggle

@ axis command to override the MATLAB selections for the axis limits.
axis([xmin xmax ymin ymax]) sets the scaling for the x- and y-axes
to the minimum and maximum values indicated. Note: no separating
commas
axis square, axis equal, axis auto

53

plot complex numbers

| y=0.1+0.9i, plot(y)
| 2=0.1+0.9i, n=0:0.01:10,
‘ plot(z."n), xlabels(’Real’), ylabel(’Imaginary’)

function plot command

| £=0(x) (cos(tan(x))-tan(sin(x)));
| fplot (£, [1 21)
‘ [x,yl=fplot (function,limits)

plotting polynomials
Eg, f(z) = 923 — 522 + 3z + 7 for
—2<x <5

|a=1[9,-5,3,71;
| x = -2:0.01:5;
‘ plot(x,polyval(a,x)),xlabel(’°x’),ylabel (*f(x)’)

. ¥ 3 8 8 & &

Exercise: MC Simul
Programming
Functions

Graphics

54

Exercise: MC Simul
Programming
Functions

Subplots Graphice

subplot command to obtain several smaller subplots in the same figure.

subplot (m,n,p) divides the Figure window into an array of rectangular
panes with m rows and n columns and sets the pointer after the pth pane.

| x = 0:0.01:5; \\
| 'y = exp(-1.2%x) .*sin(10%x+5) ; \
| subplot(1,2,1) ‘
| plot(x,y),axis([0 5 -1 1]) \
| x = -6:0.01:86; \
| y = abs(x.73-100) ; ‘
| subplot(1,2,2) ‘
| plot(x,y),axis([-6 6 0 350]) ‘

55

Exercise: MC Simul
Programming
Functions

Data Markers and Line Types Graphics

Three components can be specified in the string specifiers along with the
plotting command. They are:
o Line style

o Marker symbol

o Color

plot(x,y,u,v,’--) % where the symbols '—— ' represent a dashed line \

plot(x,y,’*’,x,y,:) % plot y versus = with asterisks connected with a dotted line ‘
plot(x,y,’g*’,x,y,’r--’) % green asterisks connected with a red dashed line ‘

% Generate some data using the besselj
x = 0:0.2:10; ke
yO = besselj(0,x); .
y1 = besselj(1,x);
y2 = besselj(2,x);
y3 = besselj(3,x);
y4 = besselj(4,x);
y5 = besselj(5,x);
y6 = besselj(6,x);

plot(x, yO, ’r+’, x, y1, ’go’, x, y2, ’b*’,
x, y3, ’cx’,
x, y4, ’ms’, x, y5, ’yd’, x, y6, ’kv’);

Exercise: MC Simul.

Programming
Functions
Graphics

[doc LineSpec

(pentagram)

" or'h' '

pointed star

o Solid line ' Plus sign
(default) o Circle r Red
= Dashed line et Asterisk Green
S Dotted line Point
= Blue
- Dash-dot line * Cross
'square’ or's' Square e Cyan
‘diamond' or'd’ | Diamend o Magenta
- Upward-pointing triangle
W Downward-pointing triangle ¥ Welle
E Right-pointing triangle k Black
< Left-pointing triangle - White
'pentagram’ or'p' | Five-pointed star

57

Labeling Curves and Data

Exercise: MC Simul
Programming
Functions

Graphics

The legend command automatically obtains the line type used for each data

set

| x = 0:0.01:2; \ 4
‘ y = sinh(x); ‘

|z = tanh(x); \

| plot(x,y,x,z,’--?) ,xlabel (°x’) | 351
| ylabel (’Hyperbolic Sine and Tangent’) |

‘ legend(’sinh(x)’,’tanh(x)’) ‘ 3f

2,50

Hyperbolic Sine and Tangent
N

—sinh(x)
~~"tanh(x)

58

Exercise: MC Simul
Programming
nctions

The hold Command and Text Annotatiors-

=-1:0.01:1
y1=3+exp(-x) .*sin(6%*x);
y2=4+exp(-x) .*cos (6*x) ;

gtext (’y2 versus y1’) % places in a point specified by the mouse
gtext (’Img(z) versus Real(x)’,’FontName’,’Times’,’Fontsize’,18)

|
|
| p1ot((0.1+0.91).7(0:0.01:10)), hold, plot(yl,y2)
\

s (8+e* sin(fe),4—e* cos(6))
Jeversus y1

text (’Interpreter’,’latex’,...
’String’, ...
*$(3+e~{-xHNsin({\it 6x}),4+e"{-x}\cos({\
it 6x}))$7,...
’Position’, [0,6],...
’FontSize’,16)

Search Text Properties in Help
Search Mathematical symbols, Greek
Letter and TeX Characters

59

Exercise: MC Simul.
Programming
Functions

Axes Transformations Grahies

25

Instead of plot, plot with

‘\ loglog(x,y) % both scales logarithmic.
| semilogx(x,y) % z scale logarithmic and the y scale rectilinear.
‘ semilogy(x,y) % y scale logarithmic and the x scale rectilinear.

Logarithmic Plots Graphies

Remember:

1. You cannot plot negative numbers on a log scale: the logarithm of a
negative number is not defined as a real number.

2. You cannot plot the number 0 on a log scale: log,,0 = —oc.

3. The tick-mark labels on a log scale are the actual values being plotted;
they are not the logarithms of the numbers. Eg, the range of = values in
the plot before is from 10~' = 0.1 to 10% = 100.

4. Gridlines and tick marks within a decade are unevenly spaced. If 8
gridlines or tick marks occur within the decade, they correspond to
values equal to 2,3,4,...,8,9 times the value represented by the first
gridline or tick mark of the decade.

5. Equal distances on a log scale correspond to multiplication by the same
constant (as opposed to addition of the same constant on a rectilinear
scale).

61

The effect of log-transformation

Exercise: MC Simul
Programming
Functions

Graphics

log=" log="x' log="y' log="xy"

y=e y=e* y =e* y =e"

log= " log="x’ log="y’ log="xy'

y = y = e y =x

log= " log="x' log="y' log='xy
y =l y =log x =fog X y =l

62

Specialized plot commands

Command Description

bar(x,y) Creates a bar chart of y versus x
stairs(x,y) Produces a stairs plot of y versus x.
stem(x,y) Produces a stem plot of y versus x.

Exercise: MC Simul
Programming
Functions

Graphics

63

Graphics

Command Description

plotyy(x1l,y1,x2,y2) Produces a plot with two y-axes, yl on
the left and y2 on the right

polar(theta,r,’type’) Produces a polar plot from the polar co-
ordinates theta and r, using the line type,
data marker, and colors specified in the
string type.

Multipls Dacay Rates

Fast Decay

2 4 s 8 0 12 1 16 18 2
Time (isec)

Scatter Plots

load count.dat

scatter(count(:,1),count(:,2),
’r*’)

xlabel (’Number of Cars on
Street A’);

ylabel(’Number of Cars on
Street B’);

Mumber of Cars on Street B

150

100

50

Faow

*-I?Sk

Exercise: MC Simul
Programming
Functions

Graphics

L)
an 60 an 100 120
Number of Cars on Street &

65

Exercise: MC Simul
Programming
Functions

Error Bar Plots P

250 T T T T

2001 4

oad count.dat;

1

y = mean(count,2); 1s0f 1
e

f

= std(count,1,2);

~
|
|

errorbar(y,e,’xr’) J 100]

G+l

Splines

Add interpolation

| x=1:24

| y=count (:,2)

| xx=0:.25:24

| yy=spline(x,y,xx)
‘plot(x ¥,207,%XX,yy)

Exercise: MC Simul
Programming
Functions
Graphics

67

Exercise: MC Simul
Programming
Functions

Three-Dimensional Line Plots Graphics

Plot in 3D the curve: 2 = ¢~ 0:05

sin(t),y = e %% cos(t),z =t

‘ t = 0:pi/50:10%pi; ‘
| plot3(exp(-0.05%t) .*sin(t), exp(-0.05%t).*cos(t), t) ‘
‘xlabel(’x’), ylabel(’y’), zlabel(’z’), grid ‘

69

Exercise: MC Simul
Programming
Functions

Surface Plots Buncpien

Surface plot of the function z = xe_[('”_yz)zﬂﬁ], for =2 < 2 <2 and
—2 <y < 2 with a spacing of 0.1

‘ [X,Y] = meshgrid(-2:0.1:2); ‘
| Z = X.vexp(-((X-Y.~2) .~2+Y.~2)); \
‘mesh(X,Y,Z), xlabel(’x’), ylabel(’y’), zlabel(’z’) ‘

70

Exercise: MC Simul
Programming
Functions

Contour Plots Graphics

Contour plot of the function z = xe_[(m_y2)2+y2], for =2 <2 <2 and
—2 <y < 2 with a spacing of 0.1

‘ [X,Y] = meshgrid(-2:0.1:2);
| Z = X.*exp(-((X-Y.72).72+Y."2));
‘contour(X,Y,Z), xlabel(’x’), ylabel(’y?’)

05

-0.5

71

Three-Dimensional Plotting Functions b

Function
contour(x,y,z)
mesh(x,y,z)
meshc(x,y,2)

meshz(x,y,z)

surf (x,y,2)
surfc(x,y,z)

[X,Y] = meshgrid(x,y)

[X,Y] = meshgrid(x)
waterfall(x,y,z)

Description

Creates a contour plot.

Creates a 3D mesh surface plot.

Same as mesh but draws contours under
the surface.

Same as mesh but draws vertical refer-
ence lines under the surface.

Creates a shaded 3D mesh surface plot.
Same as surf but draws contours under
the surface.

Creates the matrices X and Y from the
vectors x and y to define a rectangular
grid.

Same as [X,Y]= meshgrid(x,x).
Same as mesh but draws mesh lines in
one direction only.

72

a) mesh, b) meshc, c¢) meshz, d) waterfall

Exercise: MC Simul
Programming
Functions

Graphics

73

Graphics

Vector fields

Use quiver to display an arrow at each data point in = and y such that the
arrow direction and length represent the corresponding values of the vectors u

and v.
25
e TS S N [x,y] = meshgrid(0:0.2:2,0:0.2:2);
I A A B B u = cos(x).*y;
] S LA A A B v = sin(x).*y;
[R A S B S figure
e A N Y quiver(x,y,u,v)
f— — — - - s 7 ’ + !
nSA - - - e Ed Is '’] v
IE 1 1‘2 1‘4 1‘5 1‘5 2

r
el

74

Vector fields

Projectile Path Over Time - quiver3

at?
p(t) = vt + —-
2
x Vg Qg
1 2
y| = |vy t+§ ay |t
z Vz Az
2 1 0
=|3|t+5| 0 t?
10 —32

Exercise: MC Simul
Programming
Functions

Graphics

vz = 10; % wvelocity constant

a = -32; % acceleration constant

% Calculate z as the height as time varies
from 0 to 1.

& = 08.igilg

z = vz¥t + 1/2%a*xt."2;
% Calculate the position in the z—
direction and y—direction.

% Compute the components of the velocity
vectors and display the vectors

u = gradient(x);

v = gradient(y);

w = gradient(z);

scale = 0;

figure

quiver3(x,y,z,u,v,w,scale)

% Change the viewpoint of the azes to
[70,18].

view([70,18])

75

Guidelines for Making Plots Graphics

@ Should the experimental setup from the exploratory phase be redesigned to
increase conciseness or accuracy?

@ What parameters should be varied? What variables should be measured?
@ How are parameters chosen that cannot be varied?

@ Can tables be converted into curves, bar charts, scatter plots or any other
useful graphics?

@ Should tables be added in an appendix?

@ Should a 3D-plot be replaced by collections of 2D-curves?
@ Can we reduce the number of curves to be displayed?

@ How many figures are needed?

@ Should the x-axis be transformed to magnify interesting subranges?

76

@ Should the x-axis have a logarithmic scale? If so, do the x-values used
for measuring have the same basis as the tick marks?

o Make sure the each axis is labeled with the name of the quantity being
plotted and its units.

o Make tick marks regularly paced and easy to interpret and interpolate,
eg, 0.2, 0.4, rather than 0.23, 0.46

@ Use the same scale limits and tick spacing on each plot if you need to
compare information on more than one plot.

@ Is the range of x-values adequate?

@ Do we have measurements for the right x-values, i.e., nowhere too dense
or too sparse?

@ Should the y-axis be transformed to make the interesting part of the
data more visible?

@ Should the y-axis have a logarithmic scale?

@ Is it misleading to start the y-range at the smallest measured value?
(if not too much space wasted start from 0)

o Clip the range of y-values to exclude useless parts of curves?

Graphics

Can we use banking to 45°7
Are all curves sufficiently well separated?
Can noise be reduced using more accurate measurements?

Are error bars needed? If so, what should they indicate? Remember that
measurement errors are usually not random variables.

Connect points belonging to the same curve.

Only use splines for connecting points if interpolation is sensible.
Do not connect points belonging to unrelated owners.

Use different point and line styles for different curves.

Use the same styles for corresponding curves in different graphs.

Place labels defining point and line styles in the right order and without
concealing the curves.

78

(]

(4]

(]

(4]

(]

Graphics

Captions should make figures self contained.

Give enough information to make experiments reproducible.
Golden ratio rule: make the graph wider than higher [Tufte 1983].
Rule of 7: show at most 7 curves (omit those clearly irrelevant).

Avoid: explaining axes, connecting unrelated points by lines, cryptic
abbreviations, microscopic lettering, pie charts

79

Demos

Try!

[demo ’matlab’

Exercise: MC Simul.
Programming
Functions

Graphics

80

S u mm a ry Graphics

@ Overview of MATLAB environment
@ Overview of MATLAB programming and arrays

o Linear Algebra in MATLAB
(Matrix and element-by-element operations)

@ Solving linear systems in MATLAB

@ Programming: Control structures
@ Writing your own Functions
o Graphics: basic and advanced plotting

o Efficiency issues

81

	Exercise: Monte Carlo Simulation
	Improving Performance

	Programming
	Functions
	Exercise

	Graphics
	2D Plots
	3D Plots

