DM545 Linear and Integer Programming

Lecture 12 Network Flows

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Network Flows Duality Assignment and Transportat

1. (Minimum Cost) Network Flows

2. Duality in Network Flow Problems

 ${\it 3. Assignment and Transportation Problems}\\$

Outline

Network Flows Duality Assignment and Transportat

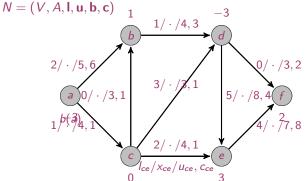
1. (Minimum Cost) Network Flows

2. Duality in Network Flow Problems

Assignment and Transportation Problems

Terminology

- Network: \bullet directed graph D = (V, A)
 - arc, directed link, from tail to head
 - lower bound $l_{ij} > 0$, $\forall ij \in A$, capacity $u_{ij} \geq l_{ij}$, $\forall ij \in A$
 - cost c_{ii} , linear variation (if $ij \notin A$ then $l_{ii} = u_{ii} = 0$, $c_{ii} = 0$)
 - balance vector b(i), b(i) < 0 supply node (source), b(i) > 0demand node (sink, tank), b(i) = 0 transhipment node (assumption $\sum_{i} b(i) = 0$)



Network Flows

Flow
$$\mathbf{x}: A \to \mathbb{R}$$
 balance vector of \mathbf{x} : $b_{\mathbf{x}}(v) = \sum_{uv \in A} x_{uv} - \sum_{vw \in A} x_{vw}$, $\forall v \in V$

$$b_{\mathbf{x}}(v) \begin{cases} > 0 & \text{sink/target/tank} \\ < 0 & \text{source} \\ = 0 & \text{balanced} \end{cases}$$

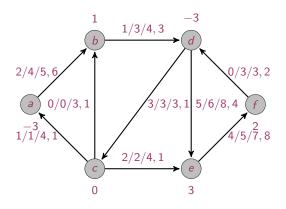
(generalizes the concept of path with $b_x(v) = \{0, 1, -1\}$)

feasible
$$l_{ij} \le x_{ij} \le u_{ij}$$
, $b_{x}(i) = b(i)$
cost $\mathbf{c}^{T}\mathbf{x} = \sum_{ij \in A} c_{ij}x_{ij}$ (varies linearly with \mathbf{x})

If iji is a 2-cycle and all $l_{ij} = 0$, then at least one of x_{ij} and x_{ji} is zero.

,

Example



Feasible flow of cost 109

Minimum Cost Network Flows

Find cheapest flow through a network in order to satisfy demands at certain nodes from available supplier nodes.

Variables:

$$x_{ij} \in \mathbb{R}_0^+$$

Objective:

$$\min \sum_{ij \in A} c_{ij} x_{ij}$$

Nx = b $1 \le x \le u$

 $min c^T x$

Constraints: mass balance + flow bounds

$$\sum_{j:ij\in A} x_{ij} - \sum_{j:ji\in A} x_{ji} = b(i) \quad \forall i \in V$$

N node arc incidence matrix

$$I_{ij} \leq x_{ij} \leq u_{ij}$$

(assumption: all values are integer, we can multiply if rational)

	X _{e1}	X_{e_2}	 x_{ij}	 X_{e_m}		
	C _{e1}	C_{e_2}	 Cij	 $C_{e_{m}}$		
1	-1		 		=	$\overline{b_1}$
2					=	b_2
:	<u> </u>	٠			=	:
i	1		 -1		=	b_i
:	! :	٠.,			=	:
j			 1		=	b_j
:	:	٠.,			=	:
n					=	b_j
e_1	-1		 	 	\geq	$-u_1$
e_2	l I	-1			\geq	$-u_2$
:	¦ :	٠			\geq	:
(i,j)	 		-1		\geq	$-u_{ij}$
:	 :	··.			\geq	:
e_m	l I			-1	\geq	$-u_m$

Reductions/Transformations

Lower bounds

Let
$$N = (V, A, I, \mathbf{u}, \mathbf{b}, \mathbf{c})$$

$$b(i) \qquad l_{ij} > 0 \qquad b(j)$$

$$(i) \qquad \qquad j$$

$$\mathbf{c}^T \mathbf{x}$$

$$N' = (V, A, I', u', b', c)$$

 $b'(i) = b(i) + l_{ij}$
 $b'(j) = b(j) - l_{ij}$
 $u'_{ij} = u_{ij} - l_{ij}$
 $l'_{ij} = 0$

$$b(i) + l_{ij} \quad l_{ij} = 0 \quad b(j) - l_{ij}$$

$$i \quad u_{ij} - l_{ij}$$

$$\mathbf{c}^{\mathsf{T}}\mathbf{x}' + \sum_{ii \in A} c_{ij} I_{ij}$$

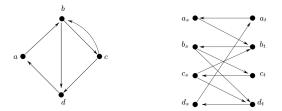
Network Flows Duality Assignment and Transportat

Undirected arcs

Vertex splitting

If there are bounds and costs of flow passing through vertices where b(v) = 0 (used to ensure that a node is visited):

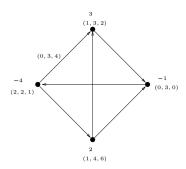
$$N = (V, A, I, \mathbf{u}, \mathbf{c}, I^*, \mathbf{u}^*, \mathbf{c}^*)$$

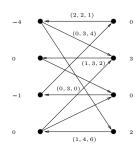


From D to D_{ST} as follows:

$$\forall v \in V \implies v_s, v_t \in V(D_{ST}) \text{ and } v_t v_s \in A(D_{ST})$$

 $\forall xy \in A(D) \rightsquigarrow x_s y_t \in A(D_{ST})$





$$\forall v \in V \text{ and } v_t v_s \in A_{ST} \rightsquigarrow h'(v_t, v_s) = h^*(v), \ h^* \in \{l^*, u^*, c^*\}$$

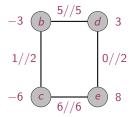
$$\forall xy \in A \text{ and } x_s y_t \in A_{ST} \rightsquigarrow h'(x_s y_t) = h(x, y), \ h \in \{l, u, c\}$$

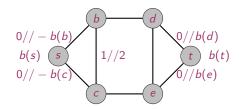
If
$$b(v) = 0$$
, then $b'(v_s) = b'(v_t) = 0$
If $b(v) < 0$, then $b'(v_t) = 0$ and $b'(v_s) = b(v)$
If $b(v) > 0$, then $b'(v_t) = b(v)$ and $b'(v_s) = 0$

(Note these last 2 slides use the different convenition that sources have positive balance.)

(s, t)-flow:

$$b_{x}(v) = \begin{cases} -k & \text{if } v = s \\ k & \text{if } v = t \\ 0 & \text{otherwise} \end{cases} \quad |\mathbf{x}| = |b_{x}(s)|$$





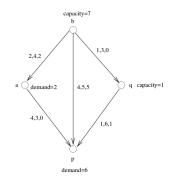
$$\begin{array}{l} b(s) = \sum_{v:b(v) < 0} b(v) = -M \\ b(t) = \sum_{v:b(v) > 0} b(v) = M \end{array}$$

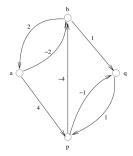
 \exists feasible flow in $N \iff \exists (s, t)$ -flow in N_{st} with |x| = M \iff max flow in N_{st} is M

Residual Network N(x): given that a flow x already exists, how much flow excess can be moved in G?

Replace arc $ij \in N$ with arcs:

	residual capacity	cost
ij:	$r_{ij}=u_{ij}-x_{ij}$	Cij
ji :	$r_{ji}=x_{ij}$	$-c_{ij}$





Special cases

Shortest path problem path of minimum cost from
$$s$$
 to t with costs ≤ 0 $b(s) = -1, b(t) = 1, b(i) = 0$ if to any other node? $b(s) = -(n-1), b(i) = 1, u_{ii} = n-1$

Max flow problem incur no cost but restricted by bounds steady state flow from s to t

$$b(i) = 0 \ \forall i \in V, \qquad c_{ij} = 0 \ \forall ij \in A \qquad ts \in A$$

 $c_{ts} = -1, \qquad u_{ts} = \infty$

Assignment problem min weighted bipartite matching,

$$|V_1| = |V_2|, A \subseteq V_1 \times V_2$$

 c_{ij}
 $b(i) = -1 \ \forall i \in V_1$ $b(i) = 1 \ \forall i \in V_2$ $u_{ij} = 1 \ \forall ij \in A$

Special cases

Transportation problem/Transhipment distribution of goods,

$$|V_1| \neq |V_2|, \qquad u_{ij} = \infty \text{ for all } ij \in A$$

$$\min \sum_{i} c_{ij} x_{ij}$$

$$\sum_{i} x_{ij} \ge b_{j} \qquad \forall j$$

$$\sum_{j} x_{ij} \le a_{i} \qquad \forall i$$

$$x_{ii} \ge 0$$

if
$$\sum a_i = \sum b_i$$
 then \geq / \leq become = if $\sum a_i > \sum b_i$ then add dummy tank nodes if $\sum a_i < \sum b_i$ then infeasible

Multi-commodity flow problem ship several commodities using the same network, different origin destination pairs separate mass balance constraints, share capacity constraints, min overall flow

$$\begin{aligned} \min \sum_{k} \mathbf{c}^{k} \mathbf{x}^{k} \\ N \mathbf{x}^{k} &\geq \mathbf{b}^{k} & \forall k \\ \sum_{k} \mathbf{x}_{ij}^{k} &\leq \mathbf{u}_{ij} & \forall ij \in A \\ 0 &\leq \mathbf{x}_{ij}^{k} &\leq \mathbf{u}_{ij}^{k} \end{aligned}$$

What is the structure of the matrix now? Is the matrix still TUM?

Application Example Ship loading problem

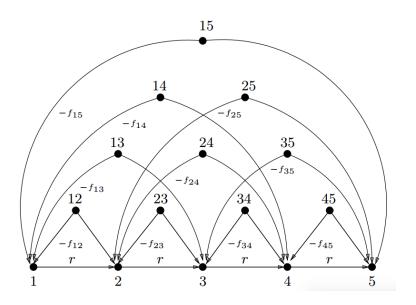
Plenty of applications. See Ahuja Magnanti Orlin, Network Flows, 1993

- A cargo company (eg, Maersk) uses a ship with a capacity to carry at most r units of cargo.
- The ship sails on a long route (say from Southampton to Alexandria) with several stops at ports in between.
- At these ports cargo may be unloaded and new cargo loaded.
- At each port there is an amount b_{ij} of cargo which is waiting to be shipped from port i to port j > i
- Let f_{ij} denote the income for the company from transporting one unit of cargo from port i to port j.
- The goal is to plan how much cargo to load at each port so as to maximize the total income while never exceeding ship's capacity.

Application Example: Modeling

- n number of stops including the starting port and the terminal port.
- $N = (V, A, I \equiv 0, u, c)$ be the network defined as follows:
 - $V = \{v_1, v_2, ..., v_n\} \cup \{v_{ij} : 1 \le i < j \le n\}$
 - $A = \{v_1v_2, v_2v_3, ...v_{n-1}v_n\} \cup \{v_{ij}v_i, v_{ij}v_j : 1 \le i < j \le n\}$
 - capacity: $u_{v_iv_{i+1}} = r$ for i = 1, 2, ..., n-1 and all other arcs have capacity ∞ .
 - cost: c_{vij}v_i = −f_{ij} for 1 ≤ i < j ≤ n and all other arcs have cost zero (including those of the form v_{ij}v_j)
 - balance vector: $b(v_{ij}) = -b_{ij}$ for $1 \le i < j \le n$ and the balance vector of $v_i = b_{1i} + b_{2i} + ... + b_{i-1,i}$ for i = 1, 2, ..., n

Duality
Assignment and Transportat



Application Example: Modeling

Claim: the network models the ship loading problem.

- suppose that $t_{12}, t_{13}, ..., t_{1n}, t_{23}, ..., t_{n-1,n}$ are cargo numbers, where t_{ij} $(\leq b_{ij})$ is the amount of cargo the ship will transport from port i to port j and that the ship is never loaded above capacity.
- total income is

$$I = \sum_{1 \le i \le j \le n} t_{ij} f_{ij}$$

- Let x be the flow in N defined as follows:
 - flow on an arc of the form $v_{ij}v_i$ is t_{ij}
 - flow on an arc of the form $v_{ij}v_j$ is $|b_{ij}|-t_{ij}$
 - flow on an arc of the form $v_i v_{i+1}$, i = 1, 2, ..., n-1, is the sum of those t_{ab} for which $a \le i$ and $b \ge i+1$.
- since t_{ij} , $1 \le i < j \le n$, are legal cargo numbers then x is feasible with respect to the balance vector and the capacity restriction.
- the cost of x is -1.

Application Example: Modeling

- Conversely, suppose that x is a feasible flow in N of cost J.
- we construct a feasible cargo assignment $s_{ij}, 1 \le i < j \le n$ as follows:
 - let s_{ij} be the value of x on the arc $v_{ij}v_i$.
- income −J

Outline

Network Flows **Duality** Assignment and Transportat

1. (Minimum Cost) Network Flows

2. Duality in Network Flow Problems

Assignment and Transportation Problems

Maximum (s, t)-Flow

Adding a backward arc from t to s:

$$z = \max_{j:ji \in A} x_{ji} - \sum_{j:ij \in A} x_{ij} = 0 \qquad \forall i \in V \qquad (\pi_i)$$

$$x_{ij} \leq u_{ij} \qquad \forall ij \in A \qquad (w_{ij})$$

$$x_{ij} \geq 0 \qquad \forall ij \in A$$

Dual problem:

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0 \qquad \forall ij \in A$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ij} \ge 0 \qquad \forall ij \in A$$

	ı						
	X _{e1}	X_{e_2}	 x_{ij}	• • •	$X_{e_{m}}$		
	C _{e1}	C_{e_2}	 C_{ij}		$C_{e_{m}}$		
1	-1	· · ·	 			=	$\overline{b_1}$
2						=	b_2
:	:	· · .				=	Ė
i	1		 -1			=	b_i
:	:	4.				=	÷
j			 1			=	b_j
:	:	1.				=	:
n						=	b_j
e_1	-1		 				$-u_1$
e_2		-1				\geq	$-u_2$
		1.				\geq	÷
(i,j)			-1			≥ ≥	$-u_{ij}$
:	:	100				≥ ≥	÷
e _m					-1	\geq	$-u_m$

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij} \tag{1}$$

$$\pi_{i} - \pi_{j} + w_{ij} \ge 0 \qquad \forall ij \in A$$

$$\pi_{t} - \pi_{s} \ge 1 \qquad (3)$$

$$w_{ii} \ge 0 \qquad \forall ij \in A \qquad (4)$$

- Without (3) all potentials would go to 0.
- Keep w low because of objective function
- Keep all potentials low \rightsquigarrow (3) $\pi_s = 0, \pi_t = 1$
- Cut C: on left =1 on right =0. Where is the transition?
- Vars w identify the cut $\rightsquigarrow \pi_j \pi_i + w_{ij} \geq 0 \rightsquigarrow w_{ij} = 1$

$$w_{ij} = \begin{cases} 1 & \text{if } ij \in C \\ 0 & \text{otherwise} \end{cases}$$

for those arcs that minimize the cut capacity $\sum_{ii \in A} u_{ij} w_{ij}$

• Complementary slackness: $w_{ij} = 1 \implies x_{ij} = u_{ij}$

Theorem

A strong dual to the max(st)-flow is the minimum (st)-cut problem:

$$\min_{X} \left\{ \sum_{ij \in A: i \in X, j \notin X} u_{ij} : s \in X \subset V \setminus \{t\} \right\}$$

Max Flow Algorithms

Optimality Condition

- Ford Fulkerson augmenting path algorithm $O(m|x^*|)$
- Edmonds-Karp algorithm (augment by shortest path) in $O(nm^2)$
- Dinic algorithm in layered networks $O(n^2m)$
- Karzanov's push relabel $O(n^2m)$

Min Cost Flow - Dual LP

$$\min \sum_{ij \in A} c_{ij} x_{ij}$$

$$\sum_{j:ji \in A} x_{ji} - \sum_{j:ij \in A} x_{ij} = b_{i} \qquad \forall i \in V \qquad (\pi_{i})$$

$$x_{ij} \leq u_{ij} \qquad \forall ij \in A \qquad (w_{ij})$$

$$x_{ij} \geq 0 \qquad \forall ij \in A$$

Dual problem:

$$\max \sum_{i \in V} b_i \pi_i - \sum_{ij \in E} u_{ij} w_{ij} \tag{1}$$

$$-c_{ij} - \pi_i + \pi_j \le w_{ij} \qquad \forall ij \in E$$
 (2)

$$w_{ij} \geq 0$$
 $\forall ij \in A$ (3)

- define reduced costs $\bar{c}_{ij} = c_{ij} + \pi_j \pi_i$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e=\infty$ then $w_e=0$ (from obj. func) and $\bar{c}_{ij}\geq 0$ (optimality condition)
- $u_e < \infty$ then $w_e \ge 0$ and $w_e \ge -\bar{c}_{ij}$ then $w_e = \max\{0, -\bar{c}_{ij}\}$, hence w_e is determined by others and irrelevant
- Complementary slackness th. for optimal solutions: each primal variable \cdot the corresponding dual slack must be equal 0, ie, $x_e(\bar{c}_e + w_e) = 0$;
 - $x_e>0$ then $-\bar{c}_e=w_e=\max\{0,\bar{c}_e\}$, $x_e>0 \implies -\bar{c}_e\geq 0$ or equivalently (by negation) $\bar{c}_e>0 \implies x_e=0$ each dual variable \cdot the corresponding primal slack must be equal 0, ie, $w_e(x_e-u_e)=0$)
 - $w_e > 0$ then $x_e = u_e$ $-\bar{c} > 0 \implies x_e = u_e$ or equivalently $\bar{c} < 0 \implies x_e = u_e$

Hence:

$$\overline{c}_e > 0$$
 then $x_e = 0$
 $\overline{c}_e < 0$ then $x_e = u_e \neq \infty$

Min Cost Flow Algorithms

Theorem (Optimality conditions)

Let x be feasible flow in N(V, A, l, u, b) then x is min cost flow in N iff N(x) contains no directed cycle of negative cost.

- Cycle canceling algorithm with Bellman Ford Moore for negative cycles $O(nm^2UC)$, $U = \max |u_e|$, $C = \max |c_e|$
- Build up algorithms $O(n^2 mM)$, $M = \max |b(v)|$

Outline

Network Flows Duality Assignment and Transportat

1. (Minimum Cost) Network Flows

2. Duality in Network Flow Problems

 ${\it 3. Assignment and Transportation Problems}\\$

Assignment Problem

Input: a set of persons $P_1, P_2, ..., P_n$, a set of jobs $J_1, J_2, ..., J_n$ and an $n \times n$ matrix $M = [M_{ij}]$ whose entries are non-negative integers. Here M_{ij} is a measure for the skill of person P_i in performing job J_j (the lower the number the better P_i performs job J_j).

Goal is to find an assignment π of persons to jobs so that each person gets exactly one job and the sum $\sum_{i=1}^{n} M_{i\pi(i)}$ is minimized.

Matching Algorithms

Matching: $M \subseteq E$ of pairwise non adjacent edges

- bipartite graphs
- arbitrary graphs

- cardinality (max or perfect)
- weighted

Assignment problem \equiv min weighted perfect bipartite matching \equiv special case of min cost flow

bipartite cardinality

Theorem

The cardinality of a max matching in a bipartite graph equals the value of a maximum (s,t)-flow in N_{st} .

```
\rightsquigarrow Dinic O(\sqrt{nm})
```

Theorem (Optimality condition (Berge))

A matching M in a graph G is a maximum matching iff G contains no M-augmenting path.

```
\rightarrow augmenting path O(\min(|U|, |V|), m)
```

bipartite weighted

build up algorithm $O(n^3)$

bipartite weighted: Hungarian method $O(n^3)$

minimum weight perfect matching

Edmonds $O(n^3)$

Theorem (Hall's (marriage) theorem)

A bipartite graph B = (X, Y, E) has a matching covering X iff:

$$|N(U)| \ge |U| \quad \forall U \subseteq X$$

Theorem (König, Egeavary theorem)

Let B = (X, Y, E) be a bipartite graph. Let M^* be the maximum matching and V^* the minimum vertex cover:

$$|M^*| = |V^*|$$

Transportation Problem

Given: a set of production plants $S_1, S_2, ..., S_m$ that produce a certain product to be shipped to a set of re-tailers $T_1, T_2, ..., T_n$. For each pair (Si, Tj) there is a real-valued cost c_{ij} of transporting one unit of the product from S_i to T_j . Each plant produces $a_i, i = 1, 2, ..., m$, units per time unit and each retailer needs $b_j, j = 1, 2, ..., n$, units of the product per time unit.

Goal: find a transportation schedule for the whole production (i.e., how many units to send from S_i to T_j for i=1,2,...,m, j=1,2,...,n) in order to minimize the total transportation cost.

We assume that $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$

Summary

Network Flows Duality Assignment and Transportat

1. (Minimum Cost) Network Flows

2. Duality in Network Flow Problems

3. Assignment and Transportation Problems