DM545
 Linear and Integer Programming

Lecture 13
 Cutting Planes and Branch and Bound

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Cutting Plane Algorithms
2. Branch and Bound

Outline

1. Cutting Plane Algorithms
2. Branch and Bound

Valid Inequalities

- IP: $z=\max \left\{\mathbf{c}^{T} \mathbf{x}: \mathbf{x} \in X\right\}, X=\left\{\mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{Z}_{+}^{n}\right\}$
- Proposition: $\operatorname{conv}(X)=\{\mathbf{x}: \tilde{A} \mathbf{x} \leq \tilde{\mathbf{b}}, \mathbf{x} \geq 0\}$ is a polyhedron
- LP: $z=\max \left\{\mathbf{c}^{T} \mathbf{x}: \tilde{A} \mathbf{x} \leq \tilde{\mathbf{b}}, \mathbf{x} \geq \mathbf{0}\right\}$ would be the best formulation
- Key idea: try to approximate the best formulation.

Definition (Valid inequalities)
$\mathbf{a x} \leq \mathbf{b}$ is a valid inequality for $X \subseteq \mathbb{R}^{n}$ if $\mathbf{a x} \leq \mathbf{b} \forall \mathbf{x} \in X$

Which are useful inequalities? and how can we find them?
How can we use them?

Example: Pre-processing

- $X=\left\{(x, y): x \leq 999 y ; 0 \leq x \leq 5, y \in \mathbb{B}^{1}\right\}$

$$
x \leq 5 y
$$

- $X=\left\{x \in \mathbb{Z}_{+}^{n}: 13 x_{1}+20 x_{2}+11 x_{3}+6 x_{4} \geq 72\right\}$

$$
\begin{aligned}
& 2 x_{1}+2 x_{2}+x_{3}+x_{4} \geq \frac{13}{11} x_{1}+\frac{20}{11} x_{2}+x_{3}+\frac{6}{11} x_{4} \geq \frac{72}{11}=6+\frac{6}{11} \\
& 2 x_{1}+2 x_{2}+x_{3}+x_{4} \geq 7
\end{aligned}
$$

- Capacitated facility location:

$$
\begin{array}{rr}
\sum_{i \in M} x_{i j} \leq b_{j} y_{j} \quad \forall j \in N & x_{i j} \leq b_{j} y_{j} \\
\sum_{j \in N} x_{i j}=a_{i} \quad \forall i \in M & x_{i j} \leq a_{i} \\
x_{i j} \geq 0, y_{j} \in B^{n} & x_{i j} \leq \min \left\{a_{i}, b_{j}\right\} y_{j}
\end{array}
$$

Chvátal-Gomory cuts

- $X \in P \cap \mathbb{Z}_{+}^{n}, \quad P=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: A \mathbf{x} \leq \mathbf{b}\right\}, \quad A \in \mathbb{R}^{m \times n}$
- $\mathbf{u} \in \mathbb{R}_{+}^{m},\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{n}\right\}$ columns of A

CG procedure to construct valid inequalities

1) $\quad \sum_{j=1}^{n} \mathbf{u a}_{j} x_{j} \leq \mathbf{u b} \quad$ valid: $\mathbf{u} \geq \mathbf{0}$
2) $\quad \sum_{j=1}^{n}\left\lfloor\mathbf{u a}_{j}\right\rfloor x_{j} \leq \mathbf{u b}$
valid: $\mathbf{x} \geq \mathbf{0}$ and $\sum\left\lfloor\mathbf{u a}_{j}\right\rfloor x_{j} \leq \sum \mathbf{u a}_{j} x_{j}$
3) $\quad \sum_{j=1}^{n}\left\lfloor\mathbf{u} \mathbf{a}_{j}\right\rfloor x_{j} \leq\lfloor\mathbf{u b}\rfloor \quad$ valid for X since $\mathbf{x} \in \mathbb{Z}^{n}$

Theorem
by applying this CG procedure a finite number of times every valid inequality for X can be obtained

Cutting Plane Algorithms

- $X \in P \cap \mathbb{Z}_{+}^{n}$
- a family of valid inequalities $\mathcal{F}: \mathbf{a}^{T} \mathbf{x} \leq b,(\mathbf{a}, b) \in \mathcal{F}$ for X
- we do not find them all a priori, only interested in those close to optimum

Cutting Plane Algorithm

$$
\begin{aligned}
& \text { Init.: } t=0, P^{0}=P \\
& \text { Iter. } t \text { Solve } \bar{z}^{t}=\max \left\{\mathbf{c}^{T} \mathbf{x}: \mathbf{x} \in P^{t}\right\} \\
& \text { let } \mathbf{x}^{t} \text { be an optimal solution } \\
& \text { if } \mathbf{x}^{t} \in \mathbb{Z}^{n} \text { stop, } \mathbf{x}^{t} \text { is opt to the IP } \\
& \text { if } \mathbf{x}^{t} \notin \mathbb{Z}^{n} \text { solve separation problem for } \mathbf{x}^{t} \text { and } \mathcal{F} \\
& \text { if }\left(\mathbf{a}^{t}, b^{t}\right) \text { is found with } \mathbf{a}^{t} \mathbf{x}^{t}>b^{t} \text { that cuts off } x^{t} \\
& \quad P^{t+1}=P \cap\left\{\mathbf{x}: \mathbf{a}^{i} \mathbf{x} \leq b^{i}, i=1, \ldots, t\right\} \\
& \text { else stop (} P^{t} \text { is in any case an improved formulation) }
\end{aligned}
$$

Cutting plane algorithm + Chvátal-Gomory cuts

- $\max \left\{\mathbf{c}^{T} \mathbf{x}: A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z}^{n}\right\}$
- Solve LPR to optimality

$$
\left[\begin{array}{c:c:c}
& & \bar{A}_{N}=A_{B}^{-1} A_{N} \\
1 & 0 & \bar{b} \\
\hdashline \bar{c}_{B} & \bar{c}_{N}(\leq 0) & 1
\end{array}\right] \quad \begin{aligned}
& x_{u}=\bar{b}_{u}-\sum_{j \in N} \bar{a}_{u j} x_{j}, \quad u \in B \\
& z=\bar{d}+\sum_{j \in N} \bar{c}_{j} x_{j}
\end{aligned}
$$

- If basic optimal solution to LPR is not integer then \exists some row u : $\bar{b}_{u} \notin \mathbb{Z}^{1}$.
The Chvatál-Gomory cut applied to this row is:

$$
x_{B_{u}}+\sum_{j \in N}\left\lfloor\bar{a}_{u j}\right\rfloor x_{j} \leq\left\lfloor\bar{b}_{u}\right\rfloor
$$

(B_{u} is the index in the basis B corresponding to the row u)

- Eliminating $x_{B_{u}}=\bar{b}_{u}-\sum_{j \in N} \bar{a}_{\mu j} x_{j}$ in the CG cut we obtain:

$$
\begin{aligned}
& \sum_{j \in N}(\underbrace{\bar{a}_{u j}-\left\lfloor\bar{a}_{u j}\right\rfloor}_{0 \leq f_{u j}<1}) x_{j} \geq \underbrace{\bar{b}_{u}-\left\lfloor\bar{b}_{u}\right\rfloor}_{0<f_{u}<1} \\
& \sum_{j \in N} f_{u j} x_{j} \geq f_{u}
\end{aligned}
$$

$f_{u}>0$ or else u would not be row of fractional solution. It implies that x^{*} in which $x_{N}^{*}=0$ is cut out!

- Moreover: when x is integer, since all coefficient in the CG cut are integer the slack variable of the cut is also integer:

$$
s=-f_{u}+\sum_{j \in N} f_{u j} x_{j}
$$

(theoretically it terminates after a finite number of iterations, but in practice not successful.)

Example

$$
\begin{aligned}
& \max x_{1}+4 x_{2} \\
& x_{1}+6 x_{2} \leq 18 \\
& x_{1} \leq 3 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \text { integer }
\end{aligned}
$$

$$
x_{2}=5 / 2, x_{1}=3
$$

Optimum, not integer

- We take the first row:
- CG cut $\sum_{j \in N} f_{u j} x_{j} \geq f_{u} \rightsquigarrow \frac{1}{6} x_{3}+\frac{5}{6} x_{4} \geq \frac{1}{2}$
- Let's see that it leaves out x^{*} : from the CG proof:

$$
\begin{aligned}
1 / 6\left(x_{1}+6 x_{2}\right. & \leq 18) \\
5 / 6\left(x_{1}\right. & \leq 3) \\
\hline x_{1}+x_{2} & \leq 3+5 / 2=5.5
\end{aligned}
$$

since x_{1}, x_{2} are integer $x_{1}+x_{2} \leq 5$

- Let's see how it looks in the space of the original variables: from the first tableau:

$$
\begin{aligned}
& x_{3}=18-6 x_{2}-x_{1} \\
& x_{4}=3-x_{1} \\
& \frac{1}{6}\left(18-6 x_{2}-x_{1}\right)+\frac{5}{6}\left(3-x_{1}\right) \geq \frac{1}{2} \quad \rightsquigarrow \quad x_{1}+x_{2} \leq 5
\end{aligned}
$$

- Graphically:

- Let's continue:

We need to apply dual-simplex (will always be the case, why?) ratio rule: $\min \left|\frac{c_{j}}{a_{i j}}\right|$

- After the dual simplex iteration:

- In the space of the original variables:

$$
\begin{array}{r}
4\left(18-x_{1}-6 x_{2}\right)+\left(5-x_{1}-x_{2}\right) \geq 2 \\
x_{1}+5 x_{2} \leq 15
\end{array}
$$

We can choose any of the three rows.

Let's take the third: CG cut: $\frac{4}{5} x_{3}+\frac{1}{5} x_{5} \geq \frac{2}{5}$

Outline

Cutting Plane Algorithms

Branch and Bound

1. Cutting Plane Algorithms
2. Branch and Bound

Branch and Bound

- Consider the problem $z=\max \left\{c^{\top} x: x \in S\right\}$
- Divide and conquer: let $S=S_{1} \cup \ldots \cup S_{k}$ be a decomposition of S into smaller sets, and let $z^{k}=\max \left\{c^{T} x: x \in S_{k}\right\}$ for $k=1, \ldots, K$. Then $z=\max _{k} z^{k}$
For instance if $S \subseteq\{0,1\}^{3}$ the enumeration tree is:

Bounding

- Let \bar{z}^{k} be an upper bound on z^{k}
- Let z^{k} be an lower bound on z^{k}
- $\left(\underline{z}^{k} \leq z^{k} \leq \bar{z}^{k}\right)$
- $\bar{z}=\max _{k} \bar{z}^{k}$ is an upper bound on z
- $\underline{z}=\max _{k} \underline{z}^{k}$ is a lower bound on z

$$
\begin{aligned}
& \bar{z}=25 \\
& \underline{z}=20 \\
& \text { pruned by optimality }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{z}=26 \\
& \underline{z}=21 \\
& \text { pruned by bounding }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{z}=37 \\
& \underline{z}=13 \\
& \text { nothing to prune }
\end{aligned}
$$

Example

$$
\begin{aligned}
\max x_{1} & +2 x_{2} \\
x_{1}+4 x_{2} & \leq 8 \\
4 x_{1} & +x_{2} \leq 8 \\
x_{1}, x_{2} & \geq 0, \text { integer }
\end{aligned}
$$

- Solve LP

- continuing

- Both variables are fractional, we pick one of the two:

- Let's consider first the left branch:

always a b term negative after branching:
$b_{1}=\left\lfloor\bar{b}_{3}\right\rfloor$
$\bar{b}_{1}=\left\lfloor\bar{b}_{3}\right\rfloor-b_{3}<0$
Dual simplex:
$\min _{j}\left|\frac{c_{j}}{a_{i j}}\right|$

- Let's branch again

We have three open problems. Which one we choose next? Let's take A.

continuing we find:
$x_{1}=0$
$x_{2}=2$
$O P T=4$

The final tree:

The optimal solution is 4 .

Pruning

Pruning:

1. by optimality: $z^{k}=\max \left\{c^{\top} x: x \in S^{k}\right\}$
2. by bound $\bar{z}^{k} \leq \underline{z}$ Example:

3. by infeasibility $S^{k}=\emptyset$

B\&B Components

Bounding:

1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

Branching:

$$
\begin{aligned}
& S_{1}=S \cap\left\{x: x_{j} \leq\left\lfloor\bar{x}_{j}\right\rfloor\right\} \\
& S_{2}=S \cap\left\{x: x_{j} \geq\left\lceil\bar{x}_{j}\right\rceil\right\}
\end{aligned}
$$

thus the current optimum is not feasible either in S_{1} or in S_{2}.
Which variable to choose?
Eg: Most fractional variable arg $\max _{j \in C} \min \left\{f_{j}, 1-f_{j}\right\}$
Choosing Node for Examination from the list of active (or open):

- Depth First Search (a good primal sol. is good for pruning + easier to reoptimize by just adding a new constraint)
- Best Bound First: (eg. largest upper: $\bar{z}^{s}=\max _{k} \bar{z}^{k}$ or largest lower - to die fast)
- Mixed strategies

Reoptimizing: dual simplex
Updating the Incumbent: when new best feasible solution is found:

$$
\underline{z}=\max \{\underline{z}, 4\}
$$

Store the active nodes: bounds + optimal basis (remember the revised simplex!)

Enhancements

- Preprocessor: constraint/problem/structure specific tightening bounds redundant constraints
variable fixing: eg: $\max \left\{c^{\top} x: A x \leq b, I \leq x \leq u\right\}$ fix $x_{j}=I_{j}$ if $c_{j}<0$ and $a_{i j}>0$ for all i

$$
\text { fix } x_{j}=u_{j} \text { if } c_{j}>0 \text { and } a_{i j}<0 \text { for all } i
$$

- Priorities: establish the next variable to branch
- Special ordered sets SOS (or generalized upper bound GUB)

$$
\sum_{j=1}^{k} x_{j}=1 \quad x_{j} \in\{0,1\}
$$

instead of: $S_{0}=S \cap\left\{x: x_{j}=0\right\}$ and $S_{1}=S \cap\left\{x: x_{j}=1\right\}$
$\left\{x: x_{j}=0\right\}$ leaves $k-1$ possibilities
$\left\{x: x_{j}=1\right\}$ leaves only 1 possibility
hence tree unbalanced
here: $S_{1}=S \cap\left\{x: x_{j i}=0, i=1 . . r\right\}$ and
$S_{2}=S \cap\left\{x: x_{j i}=0, i=r+1, . ., k\right\}, r=\min \left\{t: \sum_{i=1}^{t} x_{j_{i}}^{*} \geq \frac{1}{2}\right\}$

- Cutoff value: a user-defined primal bound to pass to the system.
- Simplex strategies: simplex is good for reoptimizing but for large models interior points methods may work best.
- Strong branching: extra work to decide more accurately on which variable to branch:

1. choose a set C of fractional variables
2. reoptimize for each them (in case for limited iterations)
3. $\bar{z}_{j}^{\downarrow}, \bar{z}_{j}^{\uparrow}$ (dual bound of down and up branch)

$$
j^{*}=\arg \min _{j \in C} \max \left\{z_{j}^{\downarrow}, z_{j}^{\uparrow}\right\}
$$

ie, choose variable with largest decrease of dual bound, eg UB for max

There are four common reasons that integer programs can require a significant amount of solution time:

1. There is lack of node throughput due to troublesome linear programming node solves.
2. There is lack of progress in the best integer solution, i.e., the upper bound.
3. There is lack of progress in the best lower bound.
4. There is insufficient node throughput due to numerical instability in the problem data or excessive memory usage.

For 2) or 3) the gap best feasible-dual bound is large:

$$
\text { gap }=\frac{\mid \text { Primal bound }- \text { Dual bound } \mid}{\text { Primal bound }+\epsilon} \cdot 100
$$

- heuristics for finding feasible solutions (generally NP-complete problem)
- find better lower bounds if they are weak: addition of cuts, stronger formulation, branch and cut
- Branch and cut: a B\&B algorithm with cut generation at all nodes of the tree. (instead of reoptimizing, do as much work as possible to tighten)

Cut pool: stores all cuts centrally Store for active node: bounds, basis, pointers to constraints in the cut pool that apply at the node

Relative Optimality Gap

In CPLEX:

$$
\text { gap }=\frac{\mid \text { best node }- \text { best integer } \mid}{\mid \text { best integer }+10^{-11} \mid}
$$

In SCIP and MIPLIB standard:

$$
\operatorname{gap}=\frac{p b-d b}{\inf \{|z|, z \in[d b, p b]\}} \cdot 100 \quad \text { for a minimization problem }
$$

(if $p b \geq 0$ and $d b \geq 0$ then $\frac{p b-d b}{d b}$)
if $d b=p b=0$ then gap $=0$
if no feasible sol found or $d b \leq 0 \leq p b$ then the gap is not computed.

Last standard avoids problem of non decreasing gap if we go through zero

3186	2520	-666.6217	4096	956.6330	-667.2010	1313338	169.74\%
3226	2560	-666.6205	4097	956.6330	-667. 2010	1323797	169.74\%
3266	2600	-666.6201	4095	956.6330	-667. 2010	1335602	169.74\%
Elapsed real time $=2801.61 \mathrm{sec} .($ (tree size $=77.54 \mathrm{MB}$, solutions $=2$)							
* 3324+	2656			-125.5775	-667. 2010	1363079	431.31\%
3334	2668	-666.5811	4052	-125.5775	-667.2010	1370748	431.31\%
3380	2714	-666.5799	4017	-125.5775	-667. 2010	1388391	431.31\%
3422	2756	-666.5791	4011	-125.5775	-667.2010	1403440	431.31\%

Advanced Techniques

We did not treat:

- LP: Dantzig Wolfe decomposition
- LP: Column generation
- LP: Delayed column generation
- IP: Branch and Price
- LP: Benders decompositions
- LP: Lagrangian relaxation

MILP Solvers Breakthroughs

We have seen Fractional Gomory cuts.
The introduction of Mixed Integer Gomory cuts in CPLEX was the major breakthrough of CPLEX 6.5 and produced the version-to-version speed-up given by the blue bars in the chart below

> MIP Performance Improvements
1991-2010

(source: R. Bixby. Mixed-Integer Programming: It works better than you may think. 2010. Slides on the net)

Summary

1. Cutting Plane Algorithms
2. Branch and Bound
