DM545 Linear and Integer Programming

Lecture 3 The Simplex Method

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

1. Simplex Method

Standard Form Basic Feasible Solutions Algorithm Tableaux and Dictionarie

A Numerical Example

$$\max \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, i = 1, \dots, m$$

$$x_j \ge 0, j = 1, \dots, n$$

$$\begin{array}{cccc} \max & 6x_1 & + & 8x_2 \\ & 5x_1 & + & 10x_2 & \leq & 60 \\ & 4x_1 & + & 4x_2 & \leq & 40 \\ & & x_1, x_2 & \geq & 0 \end{array}$$

$$\begin{array}{c} \text{max } \mathbf{c}^{\mathcal{T}}\mathbf{x} \\ A\mathbf{x} \, \leq \, \mathbf{b} \\ \mathbf{x} \, \geq \, \mathbf{0} \end{array}$$

$$\mathbf{x} \in \mathbb{R}^n, \mathbf{c} \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m$$

$$\max \quad \begin{bmatrix} 6 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$\begin{bmatrix} 5 & 10 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 60 \\ 40 \end{bmatrix}$$
$$x_1, x_2 \geq 0$$

4

1. Simplex Method

Standard Form

Basic Feasible Solutions
Algorithm
Tableaux and Dictionarie

Standard Form

Every LP problem can be converted in the form:

$$\max \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

$$A\mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x} \in \mathbb{R}^{n}$$

$$\mathbf{c} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$$

- if equations, then put two constraints, ax ≤ b and ax ≥ b
- if $ax \ge b$ then $-ax \le -b$
- if min $c^T x$ then max $(-c^T x)$

and then be put in standard (or equational) form

$$\begin{aligned}
 &\text{max } \mathbf{c}^T \mathbf{x} \\
 & A\mathbf{x} = \mathbf{b} \\
 & \mathbf{x} \ge \mathbf{0}
\end{aligned}$$

$$\mathbf{x} \in \mathbb{R}^n, \mathbf{c} \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m$$

- 1. "=" constraints
- 2. $x \ge 0$ nonnegativity constraints
- 3. **(b** \geq 0)
- 4. max

6

Transformation to Std Form

Every LP problem can be transformed in eq. std. form

1. introduce slack variables (or surplus)

$$5x_1 + 10x_2 + x_3 = 60$$

 $4x_1 + 4x_2 + x_4 = 40$

2. if
$$x_1 \gtrsim 0$$
 then $x_1' \geq 0$ $x_1'' \geq 0$ $x_1'' \geq 0$

- 3. $(b \ge 0)$
- 4. $\min c^T x \equiv \max(-c^T x)$

LP in $n \times m$ converted into LP with at most (m+2n) variables and m equations (n # original variables, m # constraints)

7

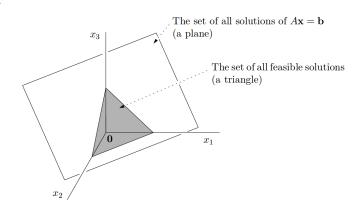
Geometry of LP in Eq. Std. Form

$$\max\{\mathbf{c}^{\mathcal{T}}\mathbf{x}\mid A\mathbf{x}=\mathbf{b},\mathbf{x}\geq\mathbf{0}\}$$

From linear algebra:

- the set of solutions of Ax = b is an affine space (hyperplane not passing through the origin).
- $x \ge 0$ nonegative orthant (octant in \mathbb{R}^3)

In \mathbb{R}^3 :



- Ax = b is a system of equations that we can solve by Gaussian elimination
- Elementary row operations of $\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix}$ do not affect set of feasible solutions
 - multiplying all entries in some row of $\begin{bmatrix} A & b \end{bmatrix}$ by a nonzero real number λ
 - replacing the ith row of [A | b] by the sum of the ith row and jth row for some i ≠ j
- We assume n' > m and

$$rank([A \mid \mathbf{b}]) = rank(A) = m$$

ie, rows of A are linearly independent otherwise, remove linear dependent rows

•

1. Simplex Method

Standard Form

Basic Feasible Solutions

Algorithm

Tableaux and Dictionaries

Basic Feasible Solutions

Basic feasible solutions are the vertices of the feasible region:

More formally:

Let $B = \{1 \dots m\}$, $N = \{m+1 \dots n+m\}$ be subsets partitioning the columns of A: A_B be made of columns of A indexed by B:

Definition

 $\mathbf{x} \in \mathbb{R}^n$ is a basic feasible solution of the linear program $\max \{ \mathbf{c}^T \mathbf{x} \mid A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$ for an index set B if:

- $x_j = 0 \ \forall j \notin B$
- the square matrix A_B is nonsingular, ie, all columns indexed by B are lin. indep.
- $\mathbf{x}_B = A_B^{-1}\mathbf{b}$ is nonnegative, ie, $\mathbf{x}_B \ge 0$ (feasibility)

We call x_j for $j \in B$ basic variables and remaining variables nonbasic variables.

Theorem

A basic feasible solution is uniquely determined by the set B.

Proof:

$$Ax = A_B x_B + A_N x_N = b$$
$$x_B + A_B^{-1} A_N x_N = A_B^{-1} b$$
$$x_B = A_B^{-1} b$$

 A_B is nonsingular hence one solution

Note: we call B a (feasible) basis

Extreme points and basic feasible solutions are geometric and algebraic manifestations of the same concept:

Theorem

Let P be a (convex) polyhedron from LP in std. form. For a point $v \in P$ the following are equivalent:

- (i) v is an extreme point (vertex) of P
- (ii) v is a basic feasible solution of LP

Proof: by recognizing that vertices of P are linear independent and such are the columns in A_B

Theorem

Let $LP = \max\{\mathbf{c}^T\mathbf{x} \mid A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ be feasible and bounded, then the optimal solution is a basic feasible solution.

Proof. consequence of previous theorem and fundamental theorem of linear programming

Idea for solution method: examine all basic solutions. There are finitely many: $\binom{m+n}{m}$. However, if n=m then $\binom{2m}{m}\approx 4^m$.

1. Simplex Method

Standard Form Basic Feasible Solutions

Algorithm

Tableaux and Dictionaries

Simplex Method

max
$$z = \begin{bmatrix} 6 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 10 & 1 & 0 \\ 4 & 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 60 \\ 40 \end{bmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Canonical eq. std. form: one decision variable is isolated in each constraint and does not appear in the other constraints nor in the obj. func. and b terms are positive

It gives immediately a basic feasible solution:

$$x_1 = 0, x_2 = 0, x_3 = 60, x_4 = 40$$

Is it optimal? Look at signs in $z \rightsquigarrow$ if positive then an increase would improve.

Let's try to increase a promising variable, ie, x_1 , one with positive coefficient in ${\it z}$

$$5x_1 + x_3 = 60$$

$$x_1 = \frac{60}{5} - \frac{x_3}{5}$$

$$x_3 = 60 - 5x_1 \ge 0$$

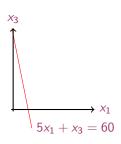
If $x_1 > 12$ then $x_3 < 0$

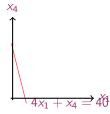
$$4x_1 + x_4 = 40$$

$$x_1 = \frac{40}{4} - \frac{x_4}{4}$$

$$x_4 = 40 - 4x_1 > 0$$

If $x_1 > 10$ then $x_4 < 0$





we can take the minimum of the two $\rightsquigarrow x_1$ increased to 10 x_4 exits the basis and x_1 enters

Simplex Tableau

First simplex tableau:

we want to reach this new tableau

Pivot operation:

1. Choose pivot:

column: one s with positive coefficient in obj. func.

row: ratio between coefficient *b* and pivot column: choose the one with smallest ratio:

$$\theta = \min_{i} \left\{ \frac{b_i}{a_{is}} : a_{is} > 0 \right\},$$
 θ increase value of entering var.

2. elementary row operations to update the tableau

- x_4 leaves the basis, x_1 enters the basis
 - Divide pivot row by pivot
 - Send to zero the coefficient in the pivot column of the first row
 - Send to zero the coefficient of the pivot column in the third (cost) row

From the last row we read: $2x_2 - 3/2x_4 - z = -60$, that is:

$$z = 60 + 2x_2 - 3/2x_4.$$

Since x_2 and x_4 are nonbasic we have z = 60 and $x_1 = 10, x_2 = 0, x_3 = 10, x_4 = 0$.

• Done? No! Let x2 enter the basis

Definition (Reduced costs)

We call reduced costs the coefficients in the objective function of the nonbasic variables, \bar{c}_N

Proposition (Optimality Condition)

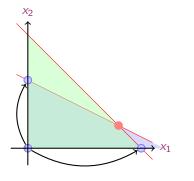
The basic feasible solution is optimal when the reduced costs in the corresponding simplex tableau are nonpositive, ie, such that:

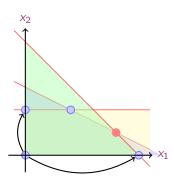
$$\bar{c}_N < 0$$

Proof: Let z_0 be the obj value when $\bar{c}_N \leq 0$. For any other feasible solution $\tilde{\mathbf{x}}$ we have:

$$\tilde{\mathbf{x}}_N \geq 0$$
 and $\mathbf{c}^T \tilde{\mathbf{x}} = z_0 + \bar{\mathbf{c}}_N^T \tilde{\mathbf{x}}_N \leq z_0$

Graphical Representation





1. Simplex Method

Standard Form Basic Feasible Solutions Algorithm

Tableaux and Dictionaries

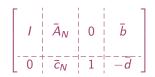
Tableaux and Dictionaries

$$\max \sum_{\substack{j=1 \\ \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \ i=1,\ldots,m \\ x_{j} \geq 0, \ j=1,\ldots,n}} x_{n+i} = b_{i} - \sum_{j=1}^{n} a_{ij} x_{j}, \quad i=1,\ldots,m$$

$$z = \sum_{j=1}^{n} c_{j} x_{j}$$

$$x_{n+i} = b_i - \sum_{j=1}^n a_{ij} x_j, \quad i = 1, \dots, n$$
$$z = \sum_{j=1}^n c_j x_j$$

Tableau



Dictionary

$$x_r = \bar{b}_r - \sum_{s \notin B} \bar{a}_{rs} x_s, \quad r \in B$$
$$z = \bar{d} + \sum_{s \notin B} \bar{c}_s x_s$$

pivot operations in dictionary form: choose col s with r.c. > 0choose row with min $\{-b_i/\bar{a}_{is} \mid a_{is} < 0, i = 1, \dots, m\}$ update: express entering variable and substitute in other rows

Example

$$\begin{array}{lll} \max & 6x_1 \ + \ 8x_2 \\ & 5x_1 \ + \ 10x_2 \ \leq \ 60 \\ & 4x_1 \ + \ 4x_2 \ \leq \ 40 \\ & x_1, x_2 \ \geq \ 0 \end{array}$$

$$x_3 = 60 - 5x_1 - 10x_2$$

$$x_4 = 40 - 4x_1 - 4x_2$$

$$z = + 6x_1 + 8x_2$$

After 2 iterations:

Simplex Method

Summary

1. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries