DM545
 Linear and Integer Programming

Lecture 6
 More on Duality

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Derivation

Geometric Interpretation
Lagrangian Duality
Dual Simplex
2. Sensitivity Analysis

Summary

- Derivation:

1. economic interpretation
2. bounding
3. multipliers
4. recipe
5. Lagrangian

- Theory:
- Symmetry
- Weak duality theorem
- Strong duality theorem
- Complementary slackness theorem
- Dual Simplex
- Sensitivity Analysis, Economic interpretation

Outline

Derivation

Sensitivity Analysis

1. Derivation

Geometric Interpretation
Lagrangian Duality
Dual Simplex
2. Sensitivity Analysis

Dual Problem

Dual variables y in one-to-one correspondence with the constraints:

Primal problem:

$$
\begin{aligned}
\max \quad z & =\mathbf{c}^{T} \mathbf{x} \\
A \mathbf{x} & =\mathbf{b} \\
\mathbf{x} & \geq 0
\end{aligned}
$$

Dual Problem:

$$
\begin{aligned}
\min w & =\mathbf{b}^{T} \mathbf{y} \\
A^{T} \mathbf{y} & \geq \mathbf{c} \\
\mathbf{y} & \in \mathbb{R}^{m}
\end{aligned}
$$

- Basic feasible solutions of (P) give immediate lower bounds on the optimal value z^{*}. Is there a simple way to get upper bounds?
- The optimal solution must satisfy any linear combination $y \in R^{m}$ of the equality constraints.
- If we can construct a linear combination of the equality constraints $\mathbf{y}^{\top}(A \mathbf{x})=\mathbf{y}^{\top} \mathbf{b}$, for $\mathbf{y} \in R^{m}$, such that $\mathbf{c}^{\top} \mathbf{x} \leq \mathbf{y}^{\top}(A \mathbf{x})$, then $\mathbf{y}^{\top}(A \mathbf{x})=\mathbf{y}^{\top} \mathbf{b}$ is an upper bound on z^{*}.

Outline

1. Derivation

Geometric Interpretation
Lagrangian Duality
Dual Simplex
2. Sensitivity Analysis

Geometric Interpretation

$$
\begin{aligned}
\max +x_{2} & =z \\
2 x_{1}+x_{2} & \leq 14 \\
-x_{1}+2 x_{2} & \leq 8 \\
2 x_{1}-x_{2} & \leq 10 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Feasible sol $x^{*}=(4,6)$ yields $z^{*}=10$. To prove that it is optimal we need to verify that $y^{*}=(3 / 5,1 / 5,0)$ is a feasible solution of D :

$$
\begin{aligned}
\min 14 y_{1}+8 y_{2}+10 y_{3} & =w \\
2 y_{1}-y_{2}+2 y_{3} & \geq 1 \\
y_{1}+2 y_{2}-y_{3} & \geq 1 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

and that $w^{*}=10$

$$
\begin{array}{r}
\frac{3}{5} \cdot\left(2 x_{1}+x_{2} \leq 14\right) \\
\frac{1}{5} \cdot\left(-x_{1}+2 x_{2} \leq 8\right) \\
\hline x_{1}+x_{2} \leq 10
\end{array}
$$

$$
(2 v-w) x_{1}+(v+2 w) x_{2} \leq 14 v+8 w
$$

set of halfplanes that contain the feasibility region of P and pass through $[4,6]$

$$
\begin{aligned}
& 2 v-w \geq 1 \\
& v+2 w \geq 1
\end{aligned}
$$

Example of boundary lines among those allowed:

$$
\begin{aligned}
& v=1, w=0 \Longrightarrow 2 x_{1}+x_{2}=14 \\
& v=1, w=1 \Longrightarrow x_{1}+3 x_{2}=22 \\
& v=2, w=1 \Longrightarrow 3 x_{1}+4 x_{2}=36
\end{aligned}
$$

Outline

1. Derivation

Geometric Interpretation
Lagrangian Duality Dual Simplex

2. Sensitivity Analysis

Lagrangian Duality

Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds.
Then, search for the strongest bounds.

$$
\begin{array}{r}
\min 13 x_{1}+6 x_{2}+4 x_{3}+12 x_{4} \\
2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}=7 \\
3 x_{1}+\quad+2 x_{3}+4 x_{4}=2 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

We wish to reduce to a problem easier to solve, ie:

$$
\begin{array}{r}
\min c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
x_{1}, x_{2}, \ldots, x_{n} \geq 0
\end{array}
$$

solvable by inspection: if $c<0$ then $x=+\infty$, if $c \geq 0$ then $x=0$. measure of violation of the constraints:

$$
\begin{aligned}
& 7-\left(2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}\right) \\
& 2-\left(3 x_{1}+\quad+2 x_{3}+4 x_{4}\right)
\end{aligned}
$$

We relax these measures in obj. function with Lagrangian multipliers y_{1}, y_{2}. We obtain a family of problems:

$$
P R\left(y_{1}, y_{2}\right)=\min _{x_{1}, x_{2}, x_{3}, x_{4} \geq 0}\left\{\begin{array}{r}
13 x_{1}+6 x_{2}+4 x_{3}+12 x_{4} \\
+y_{1}\left(7-2 x_{1}-3 x_{2}-4 x_{3}-5 x_{4}\right) \\
+y_{2}\left(2-3 x_{1} r\right. \\
\hline
\end{array}\right\}
$$

1. for all $y_{1}, y_{2} \in \mathbb{R}: \operatorname{opt}\left(P R\left(y_{1}, y_{2}\right)\right) \leq \operatorname{opt}(P)$
2. $\max _{y_{1}, y_{2} \in \mathbb{R}}\left\{\operatorname{opt}\left(P R\left(y_{1}, y_{2}\right)\right)\right\} \leq \operatorname{opt}(P)$

PR is easy to solve.
(It can be also seen as a proof of the weak duality theorem)

$$
P R\left(y_{1}, y_{2}\right)=\min _{x_{1}, x_{2}, x_{3}, x_{4} \geq 0}\left\{\begin{array}{l}
\left(13-2 y_{2}-3 y_{2}\right) x_{1} \\
+\left(6-3 y_{1}\right) x_{2} \\
+\left(4-2 y_{2}\right) x_{3} \\
+\left(12-5 y_{1}-4 y_{2}\right) x_{4} \\
+\quad 7 y_{1}+2 y_{2}
\end{array}\right\}
$$

if coeff. of x is <0 then bound is $-\infty$ then LB is useless

$$
\begin{aligned}
\left(13-2 y_{2}-3 y_{2}\right) & \geq 0 \\
\left(6-3 y_{1}\right) & \geq 0 \\
\left(4-2 y_{2}\right) & \geq 0 \\
\left(12-5 y_{1}-4 y_{2}\right) & \geq 0
\end{aligned}
$$

If they all hold then we are left with $7 y_{1}+2 y_{2}$ because all go to 0 .

$$
\begin{aligned}
\max 7 y_{1}+2 y_{2} & \\
2 y_{2}+3 y_{2} & \leq 13 \\
3 y_{1} & \leq 6 \\
+2 y_{2} & \leq 4 \\
5 y_{1}+4 y_{2} & \leq 12
\end{aligned}
$$

General Formulation

$$
\begin{aligned}
\min \quad z & =c^{T} x & & c \in \mathbb{R}^{n} \\
A x & =b & & A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m} \\
x & \geq 0 & & x \in \mathbb{R}^{n}
\end{aligned}
$$

$$
\begin{gathered}
\max _{y \in \mathbb{R}^{m}}\left\{\min _{x \in \mathbb{R}_{+}^{n}}\{c x+y(b-A x)\}\right\} \\
\max _{y \in \mathbb{R}^{m}}\left\{\min _{x \in \mathbb{R}_{+}^{n}}\{(c-y A) x+y b\}\right\} \\
\max \quad b^{T} y \\
A^{T} y \leq c \\
y \in \mathbb{R}^{m}
\end{gathered}
$$

Outline

1. Derivation

Geometric Interpretation
Lagrangian Duality
Dual Simplex
2. Sensitivity Analysis

Dual Simplex

- Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what happens in the primal tableau:

$$
\begin{aligned}
\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\} & =\min \left\{b^{T} y \mid A^{T} y \geq c^{T}, y \geq 0\right\} \\
& =-\max \left\{-b^{T} y \mid-A^{T} x \leq-c^{T}, y \geq 0\right\}
\end{aligned}
$$

- We obtain a new algorithm for the primal problem: the dual simplex It corresponds to the primal simplex applied to the dual

Primal simplex on primal problem:

1. pivot >0
2. $\operatorname{col} c_{j}$ with wrong sign
3. row:

$$
\min \left\{\frac{b_{i}}{a_{i j}}: a_{i j}>0, i=1, . ., m\right\}
$$

Dual simplex on primal problem:

1. pivot <0
2. row $b_{i}<0$
(condition of feasibility)
3. col:
$\min \left\{\left|\frac{c_{j}}{a_{i j}}\right|: a_{i j}<0, j=1,2, . . . n+m\right\}$
(least worsening solution)

Dual Simplex

0. (primal) simplex on primal problem (the one studied so far)
1. Now: dual simplex on primal problem \equiv primal simplex on dual problem (implemented as dual simplex, understood as primal simplex on dual problem)

Uses of 1.:

- The dual simplex can work better than the primal in some cases. Eg. since running time in practice between $2 m$ and $3 m$, then if $m=99$ and $n=9$ then better the dual
- Infeasible start

Dual based Phase I algorithm (Dual-primal algorithm)

Dual Simplex for Phase I

Example

Primal:

$$
\max \begin{aligned}
&-x_{1}-x_{2} \\
&-2 x_{1}-x_{2} \leq 4 \\
&-2 x_{1}+4 x_{2} \leq-8 \\
&-x_{1}+3 x_{2} \leq-7 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

$$
\min \begin{aligned}
& 4 y_{1}-8 y_{2}-7 y_{3} \\
&-2 y_{1}-2 y_{2}-y_{3} \geq-1 \\
&-y_{1}+4 y_{2}+3 y_{3} \geq-1 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

- Initial tableau

infeasible start
- x_{1} enters, w_{2} leaves
- Initial tableau (min by $\equiv-\max -$ by $)$

feasible start (thanks to $-x_{1}-x_{2}$)
- y_{2} enters, z_{1} leaves
- x_{1} enters, w_{2} leaves

- w_{2} enters, w_{3} leaves (note that we kept $c_{j}<0$, ie, optimality)

- y_{2} enters, z_{1} leaves

- y_{3} enters, y_{2} leaves

Summary

- Derivation:

1. bounding
2. multipliers
3. recipe
4. Lagrangian

- Theory:
- Symmetry
- Weak duality theorem
- Strong duality theorem
- Complementary slackness theorem
- Dual Simplex
- Sensitivity Analysis, Economic interpretation

Outline

1. Derivation

Geometric Interpretation Lagrangian Duality Dual Simplex
2. Sensitivity Analysis

Economic Interpretation

$$
\begin{aligned}
& \max 5 x_{0}+6 x_{1}+8 x_{2} \\
& 6 x_{0}+5 x_{1}+10 x_{2} \leq 60 \\
& 8 x_{0}+4 x_{1}+4 x_{2} \leq 40 \\
& 4 x_{0}+5 x_{1}+6 x_{2} \leq 50 \\
& x_{0}, x_{1}, x_{2} \geq 0
\end{aligned}
$$

final tableau:

$x 0$	$\frac{x 1}{02}$	$s 1$	$s 2$
0	$s 3$	$-z$	b
1	0	0	$5 / 2$
0	0	7	
$-\overline{1} / 5$	0	0	$-\overline{1} / 5$
-	0	$-\overline{1}$	-62

- Which are the values of variables, the reduced costs, the shadow prices (or marginal price), the values of dual variables?
- If one slack variable >0 then overcapacity: $s_{2}=2$ then the second constraint is not tight
- How many products can be produced at most? at most m
- How much more expensive a product not selected should be? look at reduced costs: $c_{i}-\pi \mathbf{a}_{j}>0$
- What is the value of extra capacity of manpower? In +1 out $+1 / 5$

Game: Suppose two economic operators:

- P owns the factory and produces goods
- D is in the market buying and selling raw material and resources
- D asks P to close and sell him all resources
- P considers if the offer is convenient
- D wants to spend least possible
- y are prices that D offers for the resources
- $\sum y_{i} b_{i}$ is the amount D has to pay to have all resources of P
- $\sum y_{i} a_{i j} \geq c_{j}$ total value to make $j>$ price per unit of product
- P either sells all resources $\sum y_{i} a_{i j}$ or produces product $j\left(c_{j}\right)$
- without \geq there would not be negotiation because P would be better off producing and selling
- at optimality the situation is indifferent (strong th.)
- resource 2 that was not totally utilized in the primal has been given value 0 in the dual. (complementary slackness th.) Plausible, since we do not use all the resource, likely to place not so much value on it.
- for product $0 \sum y_{i} a_{i j}>c_{j}$ hence not profitable producing it. (complementary slackness th.)

Instead of solving each modified problem from scratch, exploit results obtained from solving the original problem.

$$
\begin{equation*}
\max \left\{c^{\top} x \mid A x=b, l \leq x \leq u\right\} \tag{*}
\end{equation*}
$$

(I) changes to coefficients of objective function:
$\max \left\{\tilde{c}^{T} x \mid A x=b, I \leq x \leq u\right\}$
x^{*} of $\left({ }^{*}\right)$ remains feasible hence we can restart the simplex from x^{*}
(II) changes to RHS terms: $\max \left\{c^{\top} x \mid A x=\tilde{b}, I \leq x \leq u\right\}$
x^{*} optimal feasible solution of $\left({ }^{*}\right)$
basic sol \bar{x} of (II): $\bar{x}_{N}=x_{N}^{*}, A_{B} \bar{x}_{B}=\tilde{b}-A_{N} \bar{x}_{N}$
\bar{x} is dual feasible and we can start the dual simplex from there. If \tilde{b} differs from b only slightly it may be we are already optimal.
(III) introduce a new variable:

$$
\begin{aligned}
\max & \sum_{j=1}^{6} c_{j} x_{j} \\
& \sum_{j=1}^{6} a_{i j} x_{j}=b_{i}, i=1, \ldots, 3 \\
& l_{j} \leq x_{j} \leq u_{j}, j=1, \ldots, 6 \\
& {\left[x_{1}^{*}, \ldots, x_{6}^{*}\right] \text { feasible } }
\end{aligned}
$$

(IV) introduce a new constraint:

$$
\begin{aligned}
& \sum_{j=1}^{6} a_{4 j} x_{j}=b_{4} \\
& \sum_{j=1}^{6} a_{5 j} x_{j}=b_{5} \\
& l_{j} \leq x_{j} \leq u_{j} \quad j=7,8
\end{aligned}
$$

$$
\begin{aligned}
\max & \sum_{j=1}^{7} c_{j} x_{j} \\
& \sum_{j=1}^{7} a_{i j} x_{j}=b_{i}, i=1, \ldots, 3 \\
& l_{j} \leq x_{j} \leq u_{j}, j=1, \ldots, 7 \\
& {\left[x_{1}^{*}, \ldots, x_{6}^{*}, 0\right] \text { feasible } }
\end{aligned}
$$

$$
\begin{array}{r}
{\left[x_{1}^{*}, \ldots, x_{6}^{*}\right] \text { optimal }} \\
{\left[x_{1}^{*}, \ldots, x_{6}^{*}, x_{7}^{*}, x_{8}^{*}\right] \text { feasible }} \\
x_{7}^{*}=b_{4}-\sum_{j=1}^{6} a_{4 j} x_{j}^{*} \\
x_{8}^{*}=b_{5}-\sum_{j=1}^{6} a_{5 j} x_{j}^{*}
\end{array}
$$

Examples

(I) Variation of reduced costs:

$$
\begin{aligned}
& \max 6 x_{1}+8 x_{2} \\
& 5 x_{1}+10 x_{2} \leq 60 \\
& 4 x_{1}+4 x_{2} \leq 40 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

$$
\begin{array}{llll}
& \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}-z & b \\
\hdashline x_{1} & 5 & 10 & 1 \\
0 & 0 & 0 & 60 \\
x_{4} & 4 & 4 & 0 \\
\hline
\end{array}
$$

The last tableau gives the possibility to estimate the effect of variations

$$
\begin{aligned}
& \begin{array}{c:ccccc}
x_{1} & 1 & 0 & -1 / 5 & 1 / 2 & 0 \\
\hdashline-1 & 8 \\
\hdashline & 0 & -2 / 5 & -1 & 1 & -64
\end{array}
\end{aligned}
$$

For a variable in basis the perturbation goes unchanged in the red. costs. Eg:

$$
\max (6+\delta) x_{1}+8 x_{2} \Longrightarrow \bar{c}_{1}=-\frac{2}{5} \cdot 5-1 \cdot 4+1(6+\delta)=\delta
$$

then need to bring in canonical form and hence δ changes the obj value. For a variable not in basis, if it changes the sign of the reduced cost \Longrightarrow worth bringing in basis \Longrightarrow the δ term propagates to other columns
(II) Changes in RHS terms

$$
\begin{aligned}
& \begin{array}{ccccc}
& \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}-z \\
- & b \\
\hdashline x_{3} & 5 & 10 & 1
\end{array} 0 & 0 & 0 & 60+\delta
\end{array} \\
& x_{4}: 4.4 \quad 0 \quad 1-0 \quad 40+\epsilon \\
& \begin{array}{l:l}
& x_{1} x_{2} \\
\hdashline x_{2} & x_{3} \\
\hdashline-1 & x_{4} \\
\hline & -z \\
\hline
\end{array} \\
& \begin{array}{c:ccccc}
x_{1} & 1 & 0 & -1 / 5 & 1 / 2 & 0 \\
\hdashline & 0 & 8-1 / 5 \delta+1 / 2 \epsilon \\
\hdashline-2 / 5 & -1 & -64-2 / 5 \bar{\delta}-\epsilon
\end{array}
\end{aligned}
$$

(It would be more convenient to augment the second. But let's take $\epsilon=0$.) If $60+\delta \Longrightarrow$ all RHS terms change and we must check feasibility Which are the multipliers for the first row? $k_{1}=\frac{1}{5}, k_{2}=-\frac{1}{4}, k_{3}=0$
$\mathrm{I}: 1 / 5(60+\delta)-1 / 4 \cdot 40+0 \cdot 0=12+\delta / 5-10=2+\delta / 5$
II: $-1 / 5(60+\delta)+1 / 2 \cdot 40+0 \cdot 0=-60 / 5+20-\delta / 5=8-1 / 5 \delta$
Risk that RHS becomes negative
Eg: if $\delta=-10 \Longrightarrow$ tableau stays optimal but not feasible \Longrightarrow apply dual simplex

Graphical Representation

(III) Add a variable

$$
\begin{aligned}
\max 5 x_{0}+6 x_{1}+8 x_{2} & \\
6 x_{0}+5 x_{1}+10 x_{2} & \leq 60 \\
8 x_{0}+4 x_{1}+4 x_{2} & \leq 40 \\
x_{0}, x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Reduced cost of $x_{0} ? c_{j}+\sum \pi_{i} a_{i j}=+1 \cdot 5-\frac{2}{5} \cdot 6+(-1) 8=-\frac{27}{5}$
To make worth entering in basis:

- increase its cost
- decrease the amount in constraint II: $-2 / 5 \cdot 6-a_{20}+5>0$
(IV) Add a constraint

$$
\begin{aligned}
\max 6 x_{1}+8 x_{2} & \\
5 x_{1}+10 x_{2} & \leq 60 \\
4 x_{1}+4 x_{2} & \leq 40 \\
5 x_{1}+6 x_{2} & \leq 50 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Final tableau not in canonical form, need to iterate

$$
\begin{array}{c:ccccc}
& x_{1} & x_{2} & x_{3} & x_{4} & x_{5}-z \\
\hdashline x_{2} & 0 & 1 & 1 / 5 & -1 / 4 & 0 \\
x_{1} & 1 & 0 & -1 / 5 & 1 / 2 & 0 \\
\hdashline 2 \\
\hdashline & 0 & 0 & 5 / 5 & 6 / 4 & 1 \\
\hdashline & 0 & 0 & -2 / 5 & -1 & 0 \\
\hline & 1 & -64 \\
\hdashline & & -2 \\
\hdashline
\end{array}
$$

(V) change in a technological coefficient:

$$
\begin{aligned}
& x_{4} \frac{4}{6}-\frac{4}{8}-\frac{0}{0}-\frac{1}{0}-\frac{0}{1}-40
\end{aligned}
$$

- first effect on its column
- then look at c
- finally look at b

The dominant application of LP is mixed integer linear programming. In this context it is extremely important being able to begin with a model instantiated in one form followed by a sequence of problem modifications (such as row and column additions and deletions and variable fixings) interspersed with resolves

