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Solving Linear SystemsProblem Statement

Given the system of linear equations:

R1: x1 + x2 + x3 = 3

R2:

2x1 + x2 + x3 = 4

R3:

x1 − x2 + 2x3 = 5

Find whether it has any solution and in case characterize the solutions.
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Solving Linear SystemsAugmented Matrix

Definition (Augmented Matrix and Elementary row operations)

For a system of linear equations Ax = b with

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 x =


x1

x2
...
xn

 b =


b1

b2
...

bm



the augmented matrix of the system and the row operations are:

[
A b

]
=


a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


RO1: multiply a row by a non-zero constant

RO2: interchange two rows

RO3: add a multiple of one row to another

They modify the linear system
into an equivalent system
(same solutions)
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Solving Linear SystemsGaussian Elimination: Example
Let’s consider the system Ax = b with:

[
A b

]
=

 1 1 1 3
2 1 1 4
1 −1 2 5



1. Left most column that is not all zeros (it is column 1)
2. A non-zero entry at the top of this column (it is the one on the top)
3. Make the entry 1 (it is already) 1 1 1 3

2 1 1 4
1 −1 2 5


4. make all entries below the leading one zero:

 R1’=R1 1 1 1 3
R2’=R2-2R1 0 −1 −1 −2
R3’=R3-R1 0 −2 1 2
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Solving Linear SystemsExample, cntd. Row Echelon Form

5. Cover up the top row and apply steps (1) and (4) again
1. Left most column that is not all zeros is column 2
2. Non-zero entry at the top of the column
3. Make this entry the leading 1 by elementary row operations RO1 or RO2.
4. Make all entries below the leading 1 zero by RO3

 1 1 1 3
0 −1 −1 −2
0 −2 1 2



→

 1 1 1 3
0 1 1 2
0 −2 1 2



≡
x1 + x2 + x3 = 3

x2 + x3 = 2
x3 = 2

Definition (Row echelon form)

A matrix is said to be in row echelon form (or echelon form) if it has the
following three properties:
1. the first nonzero entry in each nonzero row is 1
2. a leading 1 in a lower row is further to the right
3. zero rows are at the bottom of the matrix
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Solving Linear SystemsBack substitution

x1 + x2 + x3 = 3
x2 + x3 = 2

x3 = 2

From the row echelon form we solve the system by back substitution:

• from the last equation: set x3 = 2
• substitute x3 in the second equation  x2

• substitute x2 and x3 in the first equation  x1
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Solving Linear SystemsReduced Row Echelon Form

In the augmented matrix representation:

6. Begin with the last row and add suitable multiples to each row above to
get zero above the leading 1.

1 1 1 3
0 1 1 2
0 0 1 2



→

1 1 0 1
0 1 0 0
0 0 1 2

 →
1 0 0 1
0 1 0 0
0 0 1 2



Definition (Reduced row echelon form)

A matrix is said to be in reduced (row) echelon form if it has the following
properties:
1. The matrix is in row echelon form
2. Every column with a leading 1 has zeros elsewhere
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Solving Linear Systems

From a Reduced Row Echelon Form (RREF) we can read the solution:

[
A b

]
=

1 0 0 1
0 1 0 0
0 0 1 2



→

1 0 0
0 1 0
0 0 1

x1
x2
x3

 =

10
2

 →
x1
x2
x3

 =

10
2


The system has a unique solution.
Is it a correct solution? Let’s check:

x1 + x2 + x3 = 3
2x1 + x2 + x3 = 4
x1 − x2 + 2x3 = 5

 

1 1 1
2 1 1
1 −1 2

10
2

 =

34
5
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Solving Linear SystemsGaussian Elimination: Algorithm

Gaussian Elimination algorithm for solving a linear system:
(puts the augmented matrix in a form from which the solution can be read)

1. Find left most column that is not all zeros

2. Get a non-zero entry at the top of this column (pivot element)

3. Make this entry 1 by elementary row operations RO1 or RO2. This entry
is called leading one

4. Add suitable multiples of the top row to rows below so that all entries
below the leading one become zero

5. Cover up the top row and apply steps (1) and (4) again
The matrix left is in (row) echelon form

6. Back substitution
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Solving Linear SystemsGauss-Jordan Reduction
Gauss Jordan Reduction algorithm for solving a linear system:
(puts the augmented matrix in a form from which the solution can be read)

1. Find left most column that is not all zeros

2. Get a non-zero entry at the top of this column (pivot element)

3. Make this entry 1 by elementary row operations RO1 or RO2. This entry
is called leading one

4. Add suitable multiples of the top row to rows below so that all entries
below the leading one become zero

5. Cover up the top row and apply steps (1) and (4) again
The matrix left is in (row) echelon form

6. Begin with the last row and add suitable multiples to each row above to
get zero above the leading 1.
The matrix left is in reduced (row) echelon form
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Solving Linear Systems

Will there always be exactly one solution?

R1:

2x3 = 3

R2:

2x2 + 3x3 = 4

R3:

x3 = 5

→
[
A b

]
=

 0 0 2 3
0 2 3 4
0 0 1 5


 0 0 2 3
0 2 3 4
0 0 1 5

→

 R2 0 2 3 4
R1 0 0 2 3

0 0 1 5
→

 R1/2 0 1 3
2 2

0 0 2 3
0 0 1 5

→

→

 0 1 3
2 2

R3 0 0 1 5
R2 0 0 2 3

→

 0 1 3
2 2

0 0 1 5
R3-2R2 0 0 0 −7 →

→

 0 1 3
2 2

0 0 1 5
-R3/7 0 0 0 1

0 1 3
2

0 0 1
0 0 0

x1
x2
x3

 =

25
1

 No
Solution!

13



Solving Linear Systems

Will there always be exactly one solution?

R1: 2x3 = 3
R2: 2x2 + 3x3 = 4
R3: x3 = 5

→
[
A b

]
=

 0 0 2 3
0 2 3 4
0 0 1 5



 0 0 2 3
0 2 3 4
0 0 1 5

→

 R2 0 2 3 4
R1 0 0 2 3

0 0 1 5
→

 R1/2 0 1 3
2 2

0 0 2 3
0 0 1 5

→

→

 0 1 3
2 2

R3 0 0 1 5
R2 0 0 2 3

→

 0 1 3
2 2

0 0 1 5
R3-2R2 0 0 0 −7 →

→

 0 1 3
2 2

0 0 1 5
-R3/7 0 0 0 1

0 1 3
2

0 0 1
0 0 0

x1
x2
x3

 =

25
1

 No
Solution!

13



Solving Linear Systems

Will there always be exactly one solution?

R1: 2x3 = 3
R2: 2x2 + 3x3 = 4
R3: x3 = 5

→
[
A b

]
=

 0 0 2 3
0 2 3 4
0 0 1 5


 0 0 2 3
0 2 3 4
0 0 1 5

→

 R2 0 2 3 4
R1 0 0 2 3

0 0 1 5
→

 R1/2 0 1 3
2 2

0 0 2 3
0 0 1 5

→

→

 0 1 3
2 2

R3 0 0 1 5
R2 0 0 2 3

→

 0 1 3
2 2

0 0 1 5
R3-2R2 0 0 0 −7 →

→

 0 1 3
2 2

0 0 1 5
-R3/7 0 0 0 1

0 1 3
2

0 0 1
0 0 0

x1
x2
x3

 =

25
1

 No
Solution!

13



Solving Linear Systems

Will there always be exactly one solution?

R1: 2x3 = 3
R2: 2x2 + 3x3 = 4
R3: x3 = 5

→
[
A b

]
=

 0 0 2 3
0 2 3 4
0 0 1 5


 0 0 2 3
0 2 3 4
0 0 1 5

→

 R2 0 2 3 4
R1 0 0 2 3

0 0 1 5
→

 R1/2 0 1 3
2 2

0 0 2 3
0 0 1 5

→

→

 0 1 3
2 2

R3 0 0 1 5
R2 0 0 2 3

→

 0 1 3
2 2

0 0 1 5
R3-2R2 0 0 0 −7 →

→

 0 1 3
2 2

0 0 1 5
-R3/7 0 0 0 1

0 1 3
2

0 0 1
0 0 0

x1
x2
x3

 =

25
1

 No
Solution!

13



Solving Linear Systems

Will there always be exactly one solution?

R1: 2x3 = 3
R2: 2x2 + 3x3 = 4
R3: x3 = 5

→
[
A b

]
=

 0 0 2 3
0 2 3 4
0 0 1 5


 0 0 2 3
0 2 3 4
0 0 1 5

→

 R2 0 2 3 4
R1 0 0 2 3

0 0 1 5
→

 R1/2 0 1 3
2 2

0 0 2 3
0 0 1 5

→

→

 0 1 3
2 2

R3 0 0 1 5
R2 0 0 2 3

→

 0 1 3
2 2

0 0 1 5
R3-2R2 0 0 0 −7 →

→

 0 1 3
2 2

0 0 1 5
-R3/7 0 0 0 1

0 1 3
2

0 0 1
0 0 0

x1
x2
x3

 =

25
1

 No
Solution!

13



Solving Linear Systems

Will there always be exactly one solution?

R1: 2x3 = 3
R2: 2x2 + 3x3 = 4
R3: x3 = 5

→
[
A b

]
=

 0 0 2 3
0 2 3 4
0 0 1 5


 0 0 2 3
0 2 3 4
0 0 1 5

→

 R2 0 2 3 4
R1 0 0 2 3

0 0 1 5
→

 R1/2 0 1 3
2 2

0 0 2 3
0 0 1 5

→

→

 0 1 3
2 2

R3 0 0 1 5
R2 0 0 2 3

→

 0 1 3
2 2

0 0 1 5
R3-2R2 0 0 0 −7 →

→

 0 1 3
2 2

0 0 1 5
-R3/7 0 0 0 1

0 1 3
2

0 0 1
0 0 0

x1
x2
x3

 =

25
1

 No
Solution!
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Solving Linear Systems

Definition (Consistent)

A system of linear equations is said to be consistent if it has at least one
solution. It is inconsistent if there are no solutions.

 x1 + x2 + x3 = 3
2x1 + x2 + x3 = 4
x1 − x2 + 2x3 = 5

[
A b

]
=

 1 1 1 3
2 1 1 4
1 −1 2 5
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Solving Linear SystemsGeometric Interpretation

Three equations in three unknowns interpreted as planes in space
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Solving Linear Systems

Definition (Overdetermined)

A linear system is said to be over-determined if there are more equations than
unknowns. Over-determined systems are usually (but not always) inconsistent.

Definition (Underdetermined)

A linear system of m equations and n unknowns is said to be
under-determined if there are fewer equations than unknowns (m < n). They
have usually infinitely many solutions (never just one).

16



Solving Linear SystemsLinear systems with free variables

x1 + x2 + x3 + x4 + x5 = 3
2x1 + x2 + x3 + x4 + 2x5 = 4
x1 − x2 − x3 + x4 + x5 = 5
x1 + x4 + x5 = 4

[
A b

]
=




1 1 1 1 1 3
2 1 1 1 2 4
1 −1 −1 1 1 5
1 0 0 1 1 4

→




1 1 1 1 1 3
ii-2i 0 −1 −1 −1 0 −2
iii-i 0 −2 −2 0 0 2
iv-i 0 −1 −1 0 0 1
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→




1 1 1 1 1 3
(-1)ii 0 1 1 1 0 2

0 −2 −2 0 0 2
0 −1 −1 0 0 1

→




1 1 1 1 1 3
0 1 1 1 0 2

iii+2ii 0 0 0 2 0 6
iv+ii 0 0 0 1 0 3

→




1 1 1 1 1 3
0 1 1 1 0 2

(1/2)iii 0 0 0 1 0 3
0 0 0 1 0 3

→




1 1 1 1 1 3
0 1 1 1 0 2
0 0 0 1 0 3

iv-iii 0 0 0 0 0 0
Row echelon form
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→




1 1 1 1 1 3
0 1 1 1 0 2
0 0 0 1 0 3
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→




i-iii 1 1 1 0 1 0
ii-iii 0 1 1 0 0 −1

0 0 0 1 0 3
0 0 0 0 0 0

→




i-ii 1 0 0 0 1 1
0 1 1 0 0 −1
0 0 0 1 0 3
0 0 0 0 0 0

x1 + 0 + 0 + 0 + x5 = 1
+ x2 + x3 + 0 + 0 = −1

+ x4 + 0 = 3



→




1 1 1 1 1 3
0 1 1 1 0 2
0 0 0 1 0 3
0 0 0 0 0 0

→




i-iii 1 1 1 0 1 0
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1 1 1 1 1 3
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i-iii 1 1 1 0 1 0
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+ x4 + 0 = 3



x1 + 0 + 0 + 0 + x5 = 1
+ x2 + x3 + 0 + 0 = −1

+ x4 + 0 = 3

Definition (Leading variables)

The variables corresponding with leading ones in the reduced row echelon
form of an augmented matrix are called leading variables. The other variables
are called non-leading variables

• x1, x2 and x4 are leading variables.

• x3, x5 are non-leading variables.

• we assign x3, x5 the arbitrary values s, t ∈ R and solve for the leading
variables.

• there are infinitely many solutions, represented by the general solution:

x =


x1
x2
x3
x4
x5

 =


1− t
−1− s

s
3
t

 =


1
−1
0
3
0

+ s


0
−1
1
0
0

+ t


−1
0
0
0
1





Solving Linear SystemsSolution Sets

Theorem
A system of linear equations either has no solutions, a unique solution or
infinitely many solutions.

Proof.
Let’s assume the system Ax = b has two solutions p and q. Then all points
on the line connecting these two points are also solutions and so there are
infinitely many solutions.

Ap = b Aq=b p 6= q

v = p + t(q− p), t ∈ R

Av = A(p + t(q− p)) = Ap + t(Aq− Ap) = b + t(b− b) = b

21
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Solving Linear SystemsHomogeneous systems

Definition (Homogenous system)

An homogeneous system of linear equations is a linear system of the form
Ax = 0.

• A homogeneous system Ax = 0 is always consistent
A0 = 0.

• If Ax = 0 has a unique solution, then it must be the trivial solution
x = 0.

In the augmented matrix the last column stays always zero  we can omit it.
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Solving Linear SystemsExample

x + y + 3z + w = 0
x − y + z + w = 0

y + 2z + 2w = 0
A =

 1 1 3 1
1 −1 1 1
0 1 2 2



→

 1 1 3 1
0 −2 −2 0
0 1 2 2

→

 1 1 3 1
0 1 1 0
0 1 2 2

→

 1 1 3 1
0 1 1 0
0 0 1 2

→

 1 1 0 −5
0 1 0 −2
0 0 1 2

→

 1 0 0 −3
0 1 0 −2
0 0 1 2

x =


x
y
z
w

 = t


3
2
−2
1

 , t ∈ R
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Solving Linear Systems

Theorem
If A is an m × n matrix with m < n, then Ax = 0 has infinitely many
solutions.

Proof.

• The system is always consistent since homogeneous.

• Matrix A brought in reduced echelon form contains at most m leading
ones (variables).

• n −m ≥ 1 non-leading variables

How about Ax = b with A m × n and m < n?
If the system is consistent, then there are infinitely many solutions.

24
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Solving Linear Systems

Definition (Associated homogenous system)

Given a system of linear equations, Ax = b, the linear system Ax = 0 is called
the associated homogeneous system

Eg:

RREF (A) =

1 0 0 −3
0 1 0 −2
0 0 1 2


How can you tell from here that Ax = b is consistent with infinitely many
solutions?

Definition (Null space)

For an m × n matrix A, the null space of A is the subset of Rn given by

N(A) = {x ∈ Rn | Ax = 0}

where 0 = (0, 0, . . . , 0)T is the zero vector of Rn

26
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Solving Linear Systems

Theorem (Principle of Linearity)

Suppose that A is an m× n matrix, that b ∈ Rm and that the system Ax = b
is consistent. Suppose that p is any solution of Ax = b. Then the set of all
solutions of Ax = b consists precisely of the vectors p + z for z ∈ N(A); ie,

{x | Ax = b} = {p + z | z ∈ N(A)}.

Proof: We show that
1. p + z is a solution for any z in the null space of A

({p + z | z ∈ N(A)} ⊆ {x | Ax = b})
2. that all solutions, x, of Ax = b are of the form p + z for some z ∈ N(A)

({x | Ax = b} ⊆ {p + z | z ∈ N(A)})
1. A(p + z) = Ap + Az = b + 0 = b so p + z ∈ {x | Ax = b}
2. Let x be a solution. Because p is also we have Ap = b
andA(x− p) = Ax− Ap = b− b = 0 so z = x− p is a solution of Az = 0
and x = p + z

(Check validity of the theorem on the previous examples.)

27
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Proof: We show that
1. p + z is a solution for any z in the null space of A

({p + z | z ∈ N(A)} ⊆ {x | Ax = b})
2. that all solutions, x, of Ax = b are of the form p + z for some z ∈ N(A)

({x | Ax = b} ⊆ {p + z | z ∈ N(A)})
1. A(p + z) = Ap + Az = b + 0 = b so p + z ∈ {x | Ax = b}
2. Let x be a solution. Because p is also we have Ap = b
and

A(x− p) = Ax− Ap = b− b = 0 so z = x− p is a solution of Az = 0
and x = p + z

(Check validity of the theorem on the previous examples.)
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Solving Linear SystemsSummary

• If Ax = b is consistent, the solutions are of the form:

{solutions of Ax = b} = p + {solutions of Ax = 0}

• if Ax = b has a unique solution, then Ax = 0 has only the trivial solution

• if Ax = b has a infinitely many solutions, then Ax = 0 has infinitely many
solutions

• Ax = b may be inconsistent, but Ax = 0 is always consistent.
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