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Elementary Matrices
Matrix Inverse
Determinants
More on InverseRow Operations Revisited

Let’s examine the process of applying the elementary row operations:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 =


−→a 1−→a 2
...
−→a n


(−→a i row ith of matrix A)
Then the three operations can be described as:

−→a 1
λ−→a 2
...
−→a n



−→a 2−→a 1
...
−→a n




−→a 1−→a 2 + λ−→a 1
...
−→a n
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Elementary Matrices
Matrix Inverse
Determinants
More on Inverse

For any n × n matrices A and B:

AB =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn

 =


−→a 1B−→a 2B
...
−→a nB




−→a 1B−→a 2B + λ−→a 1B
...
−→a nB

 =


−→a 1B

(−→a 2 + λ−→a 1)B
...
−→a nB

 =


−→a 1−→a 2 + λ−→a 1
...
−→a n

B

(matrix obtained by a row operation on AB)

= (matrix obtained by a row operation on A)B

(matrix obtained by a row operation on B)

= (matrix obtained by a row operation on I )B
5



Elementary Matrices
Matrix Inverse
Determinants
More on InverseElementary matrix

Definition (Elementary matrix)

An elementary matrix, E , is an n × n matrix obtained by doing exactly one
row operation on the n × n identity matrix, I .

Example:1 0 0
0 3 0
0 0 1

 0 1 0
1 0 0
0 0 1

 1 0 0
4 1 0
0 0 1
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Elementary Matrices
Matrix Inverse
Determinants
More on Inverse

B =

 1 2 4
1 3 6
−1 0 1

 ii−i−−→

 1 2 4
0 1 2
−1 0 1



I =

1 0 0
0 1 0
0 0 1

 ii−i−−→

 1 0 0
−1 1 0
0 0 1

 = E1

E1B =

 1 0 0
−1 1 0
0 0 1

 1 2 4
1 3 6
−1 0 1

 =

 1 2 4
0 1 2
−1 0 1
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseMatrix Inverse

The three elementary row operations are trivially invertible.

Theorem
Any elementary matrix is invertible, and the inverse is also an elementary
matrix

E1B =

 1 0 0
−1 1 0
0 0 1

 1 2 4
1 3 6
−1 0 1

 =

 1 2 4
0 1 2
−1 0 1



E−1
1 (E1B) =

1 0 0
1 1 0
0 0 1

 1 2 4
0 1 2
−1 0 1

 =

 1 2 4
1 3 6
−1 0 1
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseRow equivalence

To be an equivalence relation a relation must satisfy three properties:

• reflexive: A ∼ B

• symmetric: A ∼ B =⇒ B ∼ A

• transitive: A ∼ B and B ∼ C =⇒ A ∼ C

Definition (Row equivalence)

If two matrices A and B are m × n matrices, we say that A is row equivalent
to B if and only if there is a sequence of elementary row operations to
transform A to B.

Theorem
Every matrix is row equivalent to a matrix in reduced row echelon form
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseInvertible Matrices

Theorem
If A is an n × n matrix, then the following statements are equivalent:

1. A−1 exists

2. Ax = b has a unique solution for any b ∈ Rn

3. Ax = 0 only has the trivial solution, x = 0

4. The reduced row echelon form of A is I .

Proof: (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1).

• (1) =⇒ (2)

A−1Ax = A−1b =⇒ Ix = A−1b =⇒ x = A−1b

hence x = A−1b is a solution and it is unique, indeed:
A(A−1b) = (AA−1)b = Ib = b, ∀b

• (2) =⇒ (3)
If Ax = b has a unique solution for all b ∈ Rn, then this is true for
b = 0. The unique solution of Ax = 0 must be the trivial solution, x = 0 10



Elementary Matrices
Matrix Inverse
Determinants
More on Inverse

• (3) =⇒ (4)
then in the reduced row echelon form of A there are no non-leading
(free) variables and there is a leading one in every column hence also a
leading one in every row (because A is square and in RREF) hence it can
only be the identity matrix

• (4) =⇒ (1)
∃ sequence of row operations and elementary matrices E1, . . . ,Er that
reduce A to I ie,

ErEr−1 · · ·E1A = I

Each elementary matrix has an inverse hence multiplying repeatedly on
the left by E−1

r , E−1
r−1:

A = E−1
1 · · ·E−1

r−1E
−1
r I

hence, A is a product of invertible matrices hence invertible.
(Recall that B−1A−1 = (AB)−1)
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseMatrix Inverse via Row Operations

We saw that:

A = E−1
1 · · ·E−1

r−1E
−1
r I

taking the inverse of both sides:

A−1 = (E−1
1 · · ·E−1

r−1E
−1
r )−1 = Er · · ·E1 = Er · · ·E1I

Hence:

if ErEr−1E · · ·E1A = I then A−1 = ErEr−1 · · ·E1I

Method:

• Construct [A | I ]
• Use row operations to reduce this to [I | B]

• If this is not possible then the matrix is not invertible

• If it is possible then B = A−1
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseExample

A =

 1 2 4
1 3 6
−1 0 1

 → [A | I ] =

 1 2 4 1 0 0
1 3 6 0 1 0
−1 0 1 0 0 1

 ii−i
iii+i−−→

 1 2 4 1 0 0
0 1 2 −1 1 0
0 2 5 1 0 1


iii−2ii−−−−→

 1 2 4 1 0 0
0 1 2 −1 1 0
0 0 1 3 −2 1

 i−4iii
ii−2iii−−−−→

 1 2 0 −11 8 −4
0 1 0 −7 5 −2
0 0 1 3 −2 1


i−2ii−−−→

 1 0 0 3 −2 0
0 1 0 −7 5 −2
0 0 1 3 −2 1


A−1 =

 3 −2 0
−7 5 −2
3 −2 1


Verify by checking AA−1 = I and A−1A = I .
What would happen if the matrix is not invertible?
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseVerifying an Inverse

Theorem
If A and B are n × n matrices and AB = I , then A and B are each invertible
matrices, and A = B−1 and B = A−1.

Proof: show that Bx = 0 has unique solution x = 0, then B is invertible.

Bx = 0 =⇒ A(Bx) = A0 =⇒ (AB)x = 0 AB=I
=⇒ Ix = 0 =⇒ x = 0

So B−1 exists for the previous theorem. Hence:

AB = I =⇒ (AB)B−1 = IB−1 =⇒ A(BB−1) = B−1 =⇒ A = B−1

So A is the inverse of B, and therefore also invertible and

A−1 = (B−1)−1 = B
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseDeterminants

• The determinant of a matrix A is a particular number associated with A,
written |A| or det(A), that tells whether the matrix A is invertible.

• For the 2× 2 case:

[A | I ] =

[
a b 1 0
c d 0 1

]
(1/a)R1−−−−−→

[
1 b/a 1/a 0
c d 0 1

]
R2−cR1−−−−−→

[
1 b/a 1/a 0
0 d − cb/a −c/a 1

]
aR2−−→

[
1 b/a 1/a 0
0 (ad − bc) −c a

]
Hence A−1 exists if and only if ad − bc 6= 0.

• hence, for a 2× 2 matrix the determinant is∣∣∣∣[a b
c d

]∣∣∣∣ = ∣∣∣∣a b
c d

∣∣∣∣ = ad − bc

17



• The extension to n × n matrices is done recursively

Definition (Minor)

For an n × n matrix the (i , j) minor of A, denoted by Mij , is the determinant
of the (n− 1)× (n− 1) matrix obtained by removing the ith row and the jth
column of A.

Definition (Cofactor)

The (i , j) cofactor of a matrix A is

Cij = (−1)i+jMij

Definition (Cofactor Expansion of |A| by row one)

The determinant of an n × n matrix is given by

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ = a11C11 + a12C12 + · · ·+ a1nC1n



Elementary Matrices
Matrix Inverse
Determinants
More on Inverse

Example

A =

 1 2 3
4 1 1
−1 3 0

 |A| = 1C11 + 2C12 + 3C13

= 1
∣∣∣∣1 1
3 0

∣∣∣∣− 2
∣∣∣∣ 4 1
−1 0

∣∣∣∣+ 3
∣∣∣∣ 4 1
−1 3

∣∣∣∣
= 1(−3)− 2(1) + 3(13) = 34

Theorem
If A is an n × n matrix, then the determinant of A can be computed by
multiplying the entries of any row (or column) by their cofactors and
summing the resulting products:

|A| =ai1Ci1 + ai2Ci2 + · · ·+ ainCin

(cofactor expansion by row i)
|A| =a1jC1j + a2jC2j + · · ·+ anjCnj

(cofactor expansion by column j)
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Elementary Matrices
Matrix Inverse
Determinants
More on Inverse

A mnemonic rule for the 3× 3 matrix determinant: the rule of Sarrus

|A| = + a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31

Verify the rule:

• from the conditions of existence of an inverse
• as a consequence of the general recursive rule for the determinants

20



Elementary Matrices
Matrix Inverse
Determinants
More on InverseGeometric interpretation

2× 2 The area of the parallelogram is
the absolute value of the
determinant of the matrix formed
by the vectors representing the
parallelogram’s sides.

3× 3 The volume of this parallelepiped
is the absolute value of the
determinant of the matrix formed
by the rows constructed from the
vectors r1, r2, and r3.
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseProperties of Determinants

Let A be an n × n matrix, then it follows from the previous theorem:

1. |AT | = |A|

2. If a row of A consists entirely of zeros, then |A| = 0.

3. If A contains two rows which are equal, then |A| = 0.

|A| =
∣∣∣∣a b
a b

∣∣∣∣ = ab − ab = 0

|A| =

∣∣∣∣∣∣
a b c
d e f
a b c

∣∣∣∣∣∣ = −d
∣∣∣∣b c
b c

∣∣∣∣+ e
∣∣∣∣a c
a c

∣∣∣∣− f
∣∣∣∣a b
a b

∣∣∣∣ = 0+ 0+ 0

For 1. we can substitute row with column in 2., 3., 4.
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Elementary Matrices
Matrix Inverse
Determinants
More on Inverse

4. If the cofactors of one row are multiplied by the entries of a different row
and added, then the result is 0. That is, if i 6= j , then
aj1Ci1 + aj2Ci2 + · · ·+ ajnCin = 0.

A =





...
...

. . .
...

ai1 ai2 · · · ain ith
...

...
. . .

...
aj1 aj2 · · · ajn
...

...
. . .

...

|A| = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

B =





...
...

. . .
...

aj1 aj2 · · · ajn ith
...

...
. . .

...
aj1 aj2 · · · ajn
...

...
. . .

...

|B| = aj1Ci1 + aj2Ci2 + · · ·+ ajnCin = 0
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Elementary Matrices
Matrix Inverse
Determinants
More on Inverse

5. If A = (aij) and if each entry of one of the rows, say row i , can be
expressed as a sum of two numbers, aij = bij + cij for i ≤ j ≤ n, then
|A| = |B|+ |C |, where B is the matrix A with row i replaced by
bi1, bi2, · · · , bin and C is the matrix A with row i replaced by
ci1, ci2, · · · , cin.

|A| =

∣∣∣∣∣∣
a b c

d + p e + q f + r
g h i

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣+
∣∣∣∣∣∣
a b c
p q r
g h i

∣∣∣∣∣∣ = |B|+ |C |

24



Elementary Matrices
Matrix Inverse
Determinants
More on InverseTriangular Matrices

Definition (Triangular Matrices)

An n × n matrix is said to be upper triangular if aij = 0 for i > j and lower
triangular if aij = 0 for i < j . Also A is said to be triangular if it is either
upper triangular or lower triangular.

a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann




a11 0 · · · 0
a21 a22 · · · 0
...

...
. . .

...
an1 an2 · · · ann


Definition (Diagonal Matrices)

An n × n matrix is diagonal if aij = 0 whenever i 6= j .


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseDeterminant using row operations

• Which row or column would you choose for the cofactor expansion in
this case:

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

∣∣∣∣∣∣∣∣∣ =? = a11

∣∣∣∣∣∣∣
a22 · · · a2n
...

. . .
...

0 · · · ann

∣∣∣∣∣∣∣ = a11a22 · · · ann

• if A is upper/lower triangular or diagonal, then |A| = a11a22 · · · ann

• Idea: a square matrix in REF is upper triangular. What is the effect of
row operations on the determinant?
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RO1 multiply a row by a non-zero constant

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ , |B| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
αa21 αa22 · · · αa2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
|B| = αai1Ci1 + αai2Ci2 + · · ·+ αainCin = α|A|

 |A| changes to α|A|

RO2 interchange two rows

|A| =
∣∣∣∣a b
c d

∣∣∣∣ = ad − cb |B| =
∣∣∣∣c d
a b

∣∣∣∣ = cb− ad =⇒ |B| = −|A|

|A| =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ |B| =

∣∣∣∣∣∣
g h i
d e f
a b c

∣∣∣∣∣∣ =⇒ |B| = −|A|

 |A| changes to −|A| (by induction)



Elementary Matrices
Matrix Inverse
Determinants
More on Inverse

RO3 add a multiple of one row to another

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ , |B| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 + 4a11 a22 + 4a12 · · · a2n + 4a1n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
|B| =(aj1 + λai1)Cj1 + (aj2 + λai2)Cj2 + · · ·+ (ajn + λain)Cjn

=aj1Cj1 + aj2Cj2 + · · ·+ ajnCjn + λ(ai1Cj1 + ai2Cj2 + · · ·+ ainCjn)

=|A|+ 0

 there is no change in |A|
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseExample

|A| =

∣∣∣∣∣∣∣∣
1 2 −1 4
−1 3 0 2
2 1 1 2
1 4 1 3

∣∣∣∣∣∣∣∣
RO3s
=

∣∣∣∣∣∣∣∣
1 2 −1 4
0 5 −1 6
0 −3 3 −6
0 2 2 −1

∣∣∣∣∣∣∣∣
αR3= −3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 5 −1 6
0 1 −1 2
0 2 2 −1

∣∣∣∣∣∣∣∣

RO2
= 3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 1 −1 2
0 5 −1 6
0 2 2 −1

∣∣∣∣∣∣∣∣
RO3s
= 3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 1 −1 2
0 0 4 −4
0 0 4 −5

∣∣∣∣∣∣∣∣
RO3s
= 3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 1 −1 2
0 0 4 −4
0 0 4 −5

∣∣∣∣∣∣∣∣

RO3s
= 3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 1 −1 2
0 0 4 −4
0 0 0 −1

∣∣∣∣∣∣∣∣ = 3(1× 1× 4× (−1)) = −12
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseDeterminant of a Product

Theorem

If A and B are n × n matrices, then |AB| = |A||B|

Proof:
• Let E1 be an elementary matrix that multiplies a row by a non-zero
constant λ

• |E1| = |E1I | = k|I | = k and |E1B| = k|B| = |E1||B|
• similarly: |E2B| = −|B| = |E2||B| and |E2B| = |B| = |E2||B|
• by row equivalence we have

A = ErEr−1 · · ·E1R

where R is in RREF. Since A is square, R is either I or has a row of
zeros.

• |A| = |ErEr−1 · · ·E1R| = |Er ||Er−1| · · · |E1||R| and |Ei | 6= 0
• If R = I :

|AB| = |(ErEr−1 · · ·E1I )B| = |ErEr−1 · · ·E1B|
= |Er ||Er−1| · · · |E1||B| = |ErEr−1 · · ·E1||B| = |A||B|

• If R 6= I then |AB| = 0 = 0|B| 30



Elementary Matrices
Matrix Inverse
Determinants
More on InverseMatrix Inverse using Cofactors

Theorem

If A is an n × n matrix, then A is invertible if and only if |A| 6= 0.

Proof:

• implied by the first theorem of today: by (4) either R is I or it has a row
of zeros.

• Note also that if A is invertible then |AA−1| = |A||A−1| = |I |. Hence
|A| 6= 0 and

|A−1| = 1
|A|

• if |A| 6= 0 then A is invertible: we show this by construction:
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Elementary Matrices
Matrix Inverse
Determinants
More on Inverse

Definition (Adjoint)

If A is an n × n matrix, the matrix of cofactors of A if the matrix whose (i , j)
entry is Cij , the (i , j) cofactor of A.
The adjoint or (adjugate) of A is the transpose of the matrix of cofactors, ie:

adj(A) =


C11 C12 . . . C1n
C21 C22 . . . C2n
...

...
. . .

...
Cn1 Cn2 . . . Cnn


T

=


C11 C21 . . . Cn1
C12 C22 . . . Cn2
...

...
. . .

...
C1n C2n . . . Cnn
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Elementary Matrices
Matrix Inverse
Determinants
More on Inverse

•

A adj(A) =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann




C11 C21 . . . Cn1
C12 C22 . . . Cn2
...

...
. . .

...
C1n C2n . . . Cnn


• entry (1, 1) is a11C11 + a12C12 + · · ·+ a1nC1n, ie, cofactor by row 1
entry (1, 2) is a11C21 + a12C22 + · · ·+ a1nC2n, ie, entries of row 1
multiplied by cofactors of row 2

A adj(A) =


|A| 0 . . . 0
0 |A| . . . 0
...

...
. . .

...
0 0 . . . |A|

 = |A|I

• Since |A| 6= 0 we can divide:

A
(

1
|A|

adj(A)
)

= I A−1 =
1
|A|

adj(A)
33
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseMatrix Inverse using Cofactors

Example

A =

 1 2 3
−1 2 1
4 1 1

 What is A−1?

• |A| = 1(2− 1)− 2(−1− 4) + 3(−1− 8) = −16 6= 0 =⇒ invertible

• Matrix of cofactors
+M11 −M12 +M13 −M14 · · ·
−M21 +M22 −M23 +M24 · · ·
+M31 −M32 +M33 −M34 · · ·

...
...

...
...

. . .

→
 1 5 −9

1 −11 7
−4 4 4


•

A−1 =
1
|A|

adj(A) = − 1
16

 1 5 −9
1 −11 7
−4 4 4

T

= − 1
16

 1 1 −4
5 −11 4
−9 7 4
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Elementary Matrices
Matrix Inverse
Determinants
More on InverseMatrix Inverse using Cofactors

Example (cntd)

• Verify AA−1 = I :

− 1
16

 1 2 3
−1 2 1
4 1 1

 1 1 −4
5 −11 4
−9 7 4

 = − 1
16

−16 0 0
0 −16 0
0 0 −16

 = I

36



Elementary Matrices
Matrix Inverse
Determinants
More on InverseCramer’s rule

Theorem (Cramer’s rule)

If A is n × n, |A| 6= 0, and b ∈ Rn, then the solution x = [x1, x2, . . . , xn]
T of

the linear system Ax = b is given by

xi =
|Ai |
|A|

,

where Ai is the matrix obtained from A by replacing the ith column with the
vector b.

Proof: Since |A| 6= 0, A−1 exists and we can solve for x by multiplying
Ax = b on the left by A−1. The x = A−1b:

x =


x1
x2
...
xn

 =
1
|A|


C11 C21 . . . Cn1
C12 C22 . . . Cn2
...

...
. . .

...
C1n C2n . . . Cnn




b1
b2
...

bn


=⇒ xi =

1
|A| (b1C1i + b2C2i + · · ·+ bnCni ), ie, cofactor expansion of column

i of A with column i replaced by b, ie, |Ai | 37
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More on InverseMatrix Inverse using Cofactors

Example

Use Cramer’s rule to solve:
x + 2y + 3z = 7

− x + 2y + z = −3
4x + y + z = 5

• In matrix form: 1 2 3
−1 2 1
4 1 1

x
y
z

 =

 7
−3
5


• |A| = −16 6= 0

•

x =

∣∣∣∣∣∣
7 2 3
−3 2 1
5 1 1

∣∣∣∣∣∣
|A|

= 1, y =

∣∣∣∣∣∣
1 7 3
−1 −3 1
4 5 1

∣∣∣∣∣∣
|A|

= −3, z =

∣∣∣∣∣∣
1 2 7
−1 2 −3
4 1 5

∣∣∣∣∣∣
|A|

= 4
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• There are three methods to solve Ax = b if A is n × n and |A| 6= 0:

1. Gaussian elimination

2. Matrix solution: find A−1, then calculate x = A−1b

3. Cramer’s rule

• There is one method to solve Ax = b if A is m × n and m 6= n or if
|A| = 0:

1. Gaussian elimination

• There are two methods to find A−1:

1. using cofactors for the adjoint matrix

2. by row reduction of [A | I ] to [I | A−1]
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• If A is an n × n matrix, then the following statements are equivalent:

1. A is invertible

2. Ax = b has a unique solution for any b ∈ R
3. Ax = 0 has only the trivial solution, x = 0

4. the reduced row echelon form of A is I .

5. |A| 6= 0

• Solving Ax = b in practice and at the computer:

– via LU factorization (much quicker if one has to solve several systems
with the same matrix A but different vectors b)

– if A is symmetric positive definite matrix then Cholesky decomposition
(twice as fast)

– if A is large or sparse then iterative methods
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