DM559
 Linear and Integer Programming

Lecture 7
 Vector Spaces (cntd) Linear Independence, Bases and Dimension

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Vector Spaces (cntd)
2. Linear independence
3. Bases
4. Dimension

Outline

1. Vector Spaces (cntd)
2. Linear independence
3. Bases
4. Dimension

Null space of a Matrix is a Subspace

Theorem
For any $m \times n$ matrix $A, N(A)$, ie, the solutions of $A \mathbf{x}=\mathbf{0}$, is a subspace of \mathbb{R}^{n}

Proof

1. $A 0=0 \quad \Longrightarrow \quad 0 \in N(A)$
2. Suppose $\mathbf{u}, \mathbf{v} \in N(A)$, then $\mathbf{u}+\mathbf{v} \in N(A)$:

$$
A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}=\mathbf{0}+\mathbf{0}=\mathbf{0}
$$

3. Suppose $\mathbf{u} \in N(A)$ and $\alpha \in \mathbb{R}$, then $\alpha \mathbf{u} \in N(A)$:

$$
A(\alpha \mathbf{u})=A(\alpha \mathbf{u})=\alpha A \mathbf{u}=\alpha \mathbf{0}=\mathbf{0}
$$

The set of solutions S to a general system $A \mathbf{x}=\mathbf{b}$ is not a subspace of \mathbb{R}^{n} because $\mathbf{0} \notin S$

Affine subsets

Definition (Affine subset)
If W is a subspace of a vector space V and $\mathbf{x} \in V$, then the set $\mathbf{x}+W$ defined by

$$
\mathbf{x}+W=\{\mathbf{x}+\mathbf{w} \mid \mathbf{w} \in W\}
$$

is said to be an affine subset of V.
The set of solutions S to a general system $A \mathbf{x}=\mathbf{b}$ is an affine subspace, indeed recall that if x_{0} is any solution of the system

$$
S=\left\{\mathbf{x}_{0}+\mathbf{z} \mid \mathbf{z} \in N(A)\right\}
$$

Range of a Matrix is a Subspace

Theorem

For any $m \times n$ matrix $A, R(A)=\left\{A \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{n}\right\}$ is a subspace of \mathbb{R}^{m}
Proof

1. $A 0=0 \quad \Longrightarrow \quad 0 \in R(A)$
2. Suppose $\mathbf{u}, \mathbf{v} \in R(A)$, then $\mathbf{u}+\mathbf{v} \in R(A)$:
3. Suppose $\mathbf{u} \in R(A)$ and $\alpha \in \mathbb{R}$, then $\alpha \mathbf{u} \in R(A)$:

Linear Span

- If $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{k} \mathbf{v}_{k}$ and $\mathbf{w}=\beta_{1} \mathbf{v}_{1}+\beta_{2} \mathbf{v}_{2}+\ldots+\beta_{k} \mathbf{v}_{k}$, then $\mathbf{v}+\mathbf{w}$ and $s \mathbf{v}, s \in \mathbb{R}$ are also linear combinations of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$.
- The set of all linear combinations of a given set of vectors of a vector space V forms a subspace:

Definition (Linear span)
Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$. The linear span of $X=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is the set of all linear combinations of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$, denoted by $\operatorname{Lin}(X)$, that is:

$$
\operatorname{Lin}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}\right)=\left\{\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{k} \mathbf{v}_{k} \mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}\right\}
$$

Theorem
If $X=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is a set of vectors of a vectors space V, then $\operatorname{Lin}(X)$ is a subspace of V and is also called the subspace spanned by X.
It is the smallest subspace containing the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$.

Example

- $\operatorname{Lin}(\{\mathbf{v}\})=\{\alpha \mathbf{v} \mid \alpha \in \mathbb{R}\}$ defines a line in \mathbb{R}^{n}.
- Recall that a plane in \mathbb{R}^{3} has two equivalent representations:

$$
a x+b y+c z=d \quad \text { and } \quad \mathbf{x}=\mathbf{p}+s \mathbf{v}+t \mathbf{w}, \quad s, t \in \mathbb{R}
$$

where v and w are non parallel.

- If $d=0$ and $\mathbf{p}=0$, then

$$
\{\mathbf{x} \mid \mathbf{x}=s \mathbf{v}+t \mathbf{w}, s, t, \in \mathbb{R}\}=\operatorname{Lin}(\{\mathbf{v}, \mathbf{w}\})
$$

and hence a subspace of \mathbb{R}^{n}.

- If $d \neq 0$, then the plane is not a subspace. It is an affine subset, a translation of a subspace.
(recall that one can also show directly that a subset is a subspace or not)

Spanning Sets of a Matrix

Definition (Column space)
If A is an $m \times n$ matrix, and if $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}$ denote the columns of A, then the column space or range of A is

$$
\operatorname{CS}(A)=R(A)=\operatorname{Lin}\left(\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}\right\}\right)
$$

and is a subspace of \mathbb{R}^{m}.
Definition (Row space)
If A is an $m \times n$ matrix, and if $\overrightarrow{\mathbf{a}}_{1}, \overrightarrow{\mathbf{a}}_{2}, \ldots, \overrightarrow{\mathbf{a}}_{k}$ denote the rows of A, then the row space of A is

$$
R S(A)=\operatorname{Lin}\left(\left\{\overrightarrow{\mathbf{a}}_{1}, \overrightarrow{\mathbf{a}}_{2}, \ldots, \overrightarrow{\mathbf{a}}_{k}\right\}\right)
$$

and is a subspace of \mathbb{R}^{n}.

- If A is an $m \times n$ matrix, then for any $\mathbf{r} \in R S(A)$ and any $\mathbf{x} \in N(A)$, $\langle\mathbf{r}, \mathbf{x}\rangle=0$; that is, \mathbf{r} and x are orthogonal. (hint: look at $A \mathbf{x}=\mathbf{0}$)

Summary

We have seen:

- Definition of vector space and subspace
- Proofs that a given set is a vector space
- Proofs that a given subset of a vector space is a subspace or not
- Definition of linear span of set of vectors
- Definition of row and column spaces of a matrix $C S(A)=R(A)$ and $R S(A) \perp N(A)$

Outline

Bases

Dimension

1. Vector Spaces (cntd)
2. Linear independence
3. Bases
4. Dimension

Linear Independence

Definition (Linear Independence)
Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$. Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent (or form a linearly independent set) if and only if the vector equation

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

has the unique solution

$$
\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=0
$$

Definition (Linear Dependence)
Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$. Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly dependent (or form a linearly dependent set) if and only if there are real numbers $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$, not all zero, such that

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

Example
In \mathbb{R}^{2}, the vectors

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

are linearly independent. Indeed:

$$
\alpha\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\beta\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Longrightarrow \quad\left\{\begin{array}{r}
\alpha+\beta=0 \\
2 \alpha-\beta=0
\end{array}\right.
$$

The homogeneous linear system has only the trivial solution, $\alpha=0, \beta=0$, so linear independence.

Example

In \mathbb{R}^{3}, the following vectors are linearly dependent:

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
4 \\
5 \\
11
\end{array}\right]
$$

Indeed: $2 \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}=\mathbf{0}$

Theorem
The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} \subseteq V$ is linearly dependent if and only if at least one vector \mathbf{v}_{i} is a linear combination of the other vectors.

Proof

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ are linearly dependent then

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

has a solution with some $\alpha_{i} \neq 0$, then:

$$
\mathbf{v}_{i}=-\frac{\alpha_{1}}{\alpha_{i}} \mathbf{v}_{1}-\frac{\alpha_{2}}{\alpha_{i}} \mathbf{v}_{2}-\cdots-\frac{\alpha_{i-1}}{\alpha_{i}} \mathbf{v}_{i-1}-\frac{\alpha_{i+1}}{\alpha_{i}} \mathbf{v}_{i+1}+\cdots-\frac{\alpha_{k}}{\alpha_{i}} \mathbf{v}_{k}
$$

which is a linear combination of the other vectors
If \mathbf{v}_{i} is a lin combination of the other vectors, eg,

$$
\mathbf{v}_{i}=\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{i-1} \mathbf{v}_{i-1}+\beta_{i+1} \mathbf{v}_{i+1}+\cdots+\beta_{k} \mathbf{v}_{k}
$$

then

$$
\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{i-1} \mathbf{v}_{i-1}-\mathbf{v}_{i}+\beta_{i+1} \mathbf{v}_{i+1}+\cdots+\beta_{k} \mathbf{v}_{k}=\mathbf{0}
$$

Corollary
Two vectors are linearly dependent if and only if at least one vector is a scalar multiple of the other.

Example

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right]
$$

are linearly independent

Theorem
In a vector space V, a non-empty set of vectors that contains the zero vector is linearly dependent.

Proof:

$$
\begin{aligned}
& \left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} \subset V \\
& \left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{0}\right\}
\end{aligned}
$$

$$
0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+\ldots+0 \mathbf{v}_{k}+a \mathbf{0}=\mathbf{0}, \quad a \neq 0
$$

Theorem

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent vectors in V and if

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\ldots+a_{k} \mathbf{v}_{k}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+\ldots+b_{k} \mathbf{v}_{k}
$$

then

$$
a_{1}=b_{1}, \quad a_{2}=b_{2}, \quad \ldots \quad a_{k}=b_{k} .
$$

- If a vector x can be expressed as a linear combination of linearly independent vectors, then this can be done in only one way

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{k} \mathbf{v}_{k}
$$

Testing for Linear Independence in \mathbb{R}^{n}

For k vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}
$$

is equivalent to
Ax
where A is the $n \times k$ matrix whose columns are the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ and $\mathbf{x}=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right]^{T}:$

Theorem
The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n} are linearly dependent if and only if the linear system $A \mathbf{x}=\mathbf{0}$, where A is the matrix $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} \cdots & \cdots\end{array} \mathbf{v}_{k}\right]$, \bar{h} as a solution other than $\mathrm{x}=0$.
Equivalently, the vectors are linearly independent precisely when the only solution to the system is $\mathrm{x}=0$.

If vectors are linearly dependent, then any solution $x \neq 0$, $\mathbf{x}=\left[\alpha_{1}, \alpha_{2} \ldots, \alpha_{k}\right]^{T}$ of $A \mathbf{x}=\mathbf{0}$ gives a non-trivial linear combination $A \mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}$

Example

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
2 \\
-5
\end{array}\right]
$$

are linearly dependent.
We solve $A \mathbf{x}=0$

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & -1 & -5
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 3
\end{array}\right]
$$

The general solution is

$$
\mathbf{v}=\left[\begin{array}{c}
t \\
-3 t \\
t
\end{array}\right]
$$

and $A \mathbf{x}=t \mathbf{v}_{1}-3 t \mathbf{v}_{2}+t \mathbf{v}_{3}=\mathbf{0}$
Hence, for $t=1$ we have:

$$
1\left[\begin{array}{l}
1 \\
2
\end{array}\right]-3\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\left[\begin{array}{c}
2 \\
-5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Recall that $A \mathbf{x}=\mathbf{0}$ has precisely one solution $\mathbf{x}=\mathbf{0}$ iff the $n \times k$ matrix is row equiv. to a row echelon matrix with k leading ones, ie, iff $\operatorname{rank}(A)=k$

Theorem
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$. The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent iff the $n \times k$ matrix $A=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{k}\end{array}\right]$ has rank k.

Theorem

The maximum size of a linearly independent set of vectors in \mathbb{R}^{n} is n.

- $\operatorname{rank}(A) \leq \min \{n, k\}$, hence $\operatorname{rank}(A) \leq n \Rightarrow$ when lin. indep. $k \leq n$.
- we exhibit an example that has exactly n independent vectors in \mathbb{R}^{n} (there are infinite examples):

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \quad \ldots, \quad \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

This is known as the standard basis of \mathbb{R}^{n}.

Example

$$
\begin{aligned}
& L_{1}=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
9 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
5 \\
9 \\
1
\end{array}\right]\right\} \text { lin. dep. since } 5>n=4 \\
& L_{2}=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
9 \\
2
\end{array}\right]\right\} \\
& L_{3}=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
9 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
3 \\
1
\end{array}\right]\right\} \\
& L_{4}=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
9
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \quad \text { lin. indep. dep. since } \operatorname{ling}(A)=2 \\
& \hline
\end{aligned}
$$

Theorem
If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is a linearly independent set of vectors in a vector space V and if $\mathbf{w} \in V$ is not in the linear span of $S, i e, \mathbf{w} \notin \operatorname{Lin}(s)$, then the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{w}\right\}$ is linearly independent.

Proof:

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{k} \mathbf{v}_{k}+b \mathbf{w}=\mathbf{0}
$$

If $b \neq 0$, then we solve for w and find that it is a linear combination: contradiction, w $\notin \operatorname{Lin}(S)$.

Hence $b=0$ and $\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}$ implies by hypothesis that all α_{i} are zero.

Linear Independence and Span in \mathbb{R}^{n}

Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a set of vectors in \mathbb{R}^{n}.
What are the conditions for S to span \mathbb{R}^{n} and be linearly independent?
Let A be the $n \times k$ matrix whose columns are the vectors from S.

- S spans \mathbb{R}^{n} if for any $v \in \mathbb{R}^{n}$ the linear system $A \mathbf{x}=\mathbf{v}$ is consistent. This happens when $\operatorname{rank}(A)=n$, hence $k \geq n$
- S is linearly independent iff the linear system $A \mathbf{x}=0$ has a unique solution. This happens when $\operatorname{rank}(A)=k$, Hence $k \leq n$

Hence, to span \mathbb{R}^{n} and to be linearly independent, the set S must have exactly n vectors and the square matrix A must have $\operatorname{det}(A) \neq 0$

Example

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
4 \\
5 \\
1
\end{array}\right] \quad|A|=\left|\begin{array}{lll}
1 & 2 & 4 \\
2 & 1 & 5 \\
3 & 5 & 1
\end{array}\right|=30 \neq 0
$$

Outline

Bases

Dimension
> 1. Vector Spaces (cntd)
> 2. Linear independence

3. Bases

4. Dimension

Bases

Definition (Basis)
Let V be a vector space. Then the subset $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ of V is said to be a basis for V if:

1. B is a linearly independent set of vectors, and
2. B spans V; that is, $V=\operatorname{Lin}(B)$

Theorem

If V is a vector space, then a smallest spanning set is a basis of V.

Theorem
$B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V if and only if any $\mathbf{v} \in V$ is a unique linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$

Example
$\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is the standard basis of \mathbb{R}^{n}.
the vectors are linearly independent and for any $\mathrm{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \in \mathbb{R}^{n}$, $\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\ldots+x_{n} \mathbf{e}_{n}$, ie,

$$
\mathbf{x}=x_{1}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right]+\ldots+x_{n}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

Example
The set below is a basis of \mathbb{R}^{2} :

$$
S=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}
$$

- any vector $\mathrm{x} \in \mathbb{R}^{2}$ can be written as a linear combination of vectors in S.
- any vector \mathbf{b} is a linear combination of the two vectors in S $\rightsquigarrow A \mathbf{x}=\mathbf{b}$ is consistent for any \mathbf{b}.
- S spans \mathbb{R}^{2} and is linearly independent

Example

Find a basis of the subspace of \mathbb{R}^{3} given by

$$
\begin{aligned}
& W=\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \right\rvert\, x+y-3 z=0\right\} . \\
& \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
-x+3 z \\
z
\end{array}\right]=x\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]=x \mathbf{v}+z \mathbf{w}, \quad \forall x, z \in \mathbb{R}
\end{aligned}
$$

The set $\{\mathbf{v}, \mathbf{w}\}$ spans W. The set is also independent:

$$
\alpha \mathbf{v}+\beta \mathbf{w}=\mathbf{0} \Longrightarrow \alpha=0, \beta=0
$$

Extension of the main theorem

Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent:

1. A is invertible
2. $A \mathbf{x}=\mathbf{b}$ has a unique solution for any $\mathbf{b} \in \mathbb{R}$
3. $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, $\mathrm{x}=\mathbf{0}$
4. the reduced row echelon form of A is I.
5. $|A| \neq 0$
6. The rank of A is n
7. The column vectors of A are a basis of \mathbb{R}^{n}
8. The rows of A (written as vectors) are a basis of \mathbb{R}^{n}
(The last statement derives from $\left|A^{T}\right|=|A|$.)
Hence, simply calculating the determinant can inform on all the above facts.

Example

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
4 \\
5 \\
11
\end{array}\right]
$$

This set is linearly dependent since $\mathbf{v}_{3}=2 \mathbf{v}_{1}+\mathbf{v}_{2}$ so $\mathbf{v}_{3} \in \operatorname{Lin}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)$ and $\operatorname{Lin}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)=\operatorname{Lin}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)$.
The linear span of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ in \mathbb{R}^{3} is a plane:

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=s \mathbf{v}_{1}+t \mathbf{v}_{2}=s\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+t\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right]
$$

The vector x belongs to the subspace iff it can be expressed as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$, that is, if $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{x}$ are linearly dependent or:

$$
|A|=\left|\begin{array}{lll}
1 & 2 & x \\
2 & 1 & y \\
3 & 5 & z
\end{array}\right|=0 \quad \Longrightarrow \quad|A|=7 x+y-3 z=0
$$

Definition (Coordinates)
If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of a vector space V, then any vector $\mathbf{v} \in V$ can be expressed uniquely as $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{n} \mathbf{v}_{n}$ then the real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the coordinates of \mathbf{v} with respect to the basis S. We use the notation

$$
[\mathbf{v}]_{S}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]_{S}
$$

to denote the coordinate vector of v in the basis S.

Example
Consider the two basis of \mathbb{R}^{2} :

$$
\begin{array}{ll}
B=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} & S=\left\{\left[\begin{array}{c}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\} \\
{[\mathbf{v}]_{B}=\left[\begin{array}{c}
2 \\
-5
\end{array}\right]_{B}} & {[\mathbf{v}]_{S}=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]_{S}}
\end{array}
$$

In the standard basis the coordinates of v are precisely the components of the vector \mathbf{v}.
In the basis S, they are such that

$$
\mathbf{v}=-1\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-5
\end{array}\right]
$$

Outline

Bases

> 1. Vector Spaces (cntd)
> 2. Linear independence
3. Bases

4. Dimension

Theorem
Let V be a vector space with a basis

$$
B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}
$$

of n vectors. Then any set of $n+1$ vectors is linearly dependent.
Proof:

- Let $S=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n+1}\right\}$ be any set of $n+1$ vectors in V.
- Since B is a basis, then

$$
\mathbf{w}_{i}=a_{1 i} \mathbf{v}_{1}+a_{2 i} \mathbf{v}_{2}+\ldots+a_{n i} \mathbf{v}_{n}
$$

- linear combination of vectors in S :

$$
b_{1} \mathbf{w}_{1}+b_{2} \mathbf{w}_{2}+\cdots+b_{n+1} \mathbf{w}_{n+1}=\mathbf{0}
$$

Substituting:

$$
\begin{aligned}
b_{1}\left(a_{11} \mathbf{v}_{1}+a_{21} \mathbf{v}_{2}+\right. & \left.\ldots+a_{n 1} \mathbf{v}_{n}\right)+b_{2}\left(a_{12} \mathbf{v}_{1}+a_{22} \mathbf{v}_{2}+\ldots+a_{n 2} \mathbf{v}_{n}\right)+\cdots \\
& +b_{n+1}\left(a_{1, n+1} \mathbf{v}_{1}+a_{2, n+1} \mathbf{v}_{2}+\ldots+a_{n, n+1} \mathbf{v}_{n}\right)=\mathbf{0}
\end{aligned}
$$

$$
\begin{aligned}
b_{1}\left(a_{11} \mathbf{v}_{1}+a_{21} \mathbf{v}_{2}+\right. & \left.\ldots+a_{n 1} \mathbf{v}_{n}\right)+b_{2}\left(a_{12} \mathbf{v}_{1}+a_{22} \mathbf{v}_{2}+\ldots+a_{n 2} \mathbf{v}_{n}\right)+\cdots \\
& +b_{n+1}\left(a_{1, n+1} \mathbf{v}_{1}+a_{2, n+1} \mathbf{v}_{2}+\ldots+a_{n, n+1} \mathbf{v}_{n}\right)=\mathbf{0}
\end{aligned}
$$

collecting the terms that multiply the vectors:

$$
\begin{gathered}
\left(b_{1} a_{11}+b_{2} a_{12}+\cdots+b_{n+1} a_{1, n+1}\right) \mathbf{v}_{1}+\left(b_{1} a_{2,1}+b_{2} a_{2,2}+\cdots+b_{n+1} a_{2, n+1}\right) \mathbf{v}_{2}+\cdots \\
+\left(b_{1} a_{n, 1}+b_{2} a_{n, 2}+\cdots+b_{n+1} a_{n, n+1}\right) \mathbf{v}_{n}=\mathbf{0}
\end{gathered}
$$

this gives us the system

$$
\left\{\begin{array}{c}
b_{1} a_{11}+b_{2} a_{12}+\cdots+b_{n+1} a_{1, n+1}=0 \\
b_{1} a_{2,1}+b_{2} a_{2,2}+\cdots+b_{n+1} a_{2, n+1}=0 \\
\vdots \\
b_{1} a_{n, 1}+b_{2} a_{n, 2}+\cdots+b_{n+1} a_{n, n+1}=0
\end{array}\right.
$$

Homogeneous system of $n+1$ variables $\left(b_{1}, \ldots, b_{n+1}\right)$ in n equations. Hence at least one free variable. Hence

$$
b_{1} \mathbf{w}_{1}+b_{2} \mathbf{w}_{2}+\cdots+b_{n+1} \mathbf{w}_{n+1}=\mathbf{0}
$$

has non trivial solutions and the set S is linearly dependent.

It follows that:

Theorem

Let a vector space V have a finite basis consisting of r vectors. Then any basis of V consists of exactly r vectors.

Definition (Dimension)
The number of k vectors in a finite basis of a vector space V is the dimension of V and is denoted by $\operatorname{dim}(V)$.
The vector space $V=\{0\}$ is defined to have dimension 0 .

- a plane in \mathbb{R}^{2} is a two-dimensional subspace
- a line in \mathbb{R}^{n} is a one-dimensional subspace
- a hyperplane in \mathbb{R}^{n} is an ($n-1$)-dimensional subspace of \mathbb{R}^{n}
- the vector space F of real functions is an infinite-dimensional vector space
- the vector space of real-valued sequences is an infinite-dimensional vector space.

Dimension and bases of Subspaces

Example
The plane W in \mathbb{R}^{3}

$$
W=\{\mathbf{x} \mid x+y-3 z=0\}
$$

has a basis consisting of the vectors $\mathbf{v}_{1}=[1,2,1]^{T}$ and $\mathbf{v}_{2}=[3,0,1]^{T}$.
Let \mathbf{v}_{3} be any vector $\notin W$, eg, $\mathbf{v}_{3}=[1,0,0]^{\top}$. Then the set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis of \mathbb{R}^{3}.

Basis and Dimension in \mathbb{R}^{n}

Recall: Three subspaces associated with an $m \times n$ matrix A :
$R S(A)$ row space: linear span of the rows of A
subspace of \mathbb{R}^{n}
$N(A)$ null space: set of all solutions of $A \mathbf{x}=\mathbf{0}$ subspace of \mathbb{R}^{n}
$R(A)=C S(A)$ range or column space: linear span of column vectors; subspace of \mathbb{R}^{m}

How do we find a basis for these subspaces?

Example

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
1 & 2 & 1 & 1 & 2 \\
0 & 1 & 2 & 1 & 4 \\
-1 & 3 & 9 & 1 & 9 \\
0 & 1 & 2 & 0 & 1
\end{array}\right] \\
& R S(A)=\operatorname{Lin}\left(\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
1 \\
4
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
9 \\
1 \\
9
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
0 \\
1
\end{array}\right]\right\}\right)
\end{aligned}
$$

$$
N(A)=\{\mathbf{x} \mid A \mathbf{x}=\mathbf{0}\}
$$

subspace in \mathbb{R}^{5}

$$
R(A)=C S(A)=\operatorname{Lin}\left(\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
9 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
9 \\
1
\end{array}\right]\right\}\right) \text { subspace in } \mathbb{R}^{4}
$$

Example (cntd)

$$
A \rightarrow \cdots \rightarrow\left[\begin{array}{ccccc}
1 & 0 & -3 & 0 & -3 \\
0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=R
$$

$R S(A)=R S(R)$ because row operations are linear combinations of the vectors. Hence a basis for $R S(A)$ is given by the non-zero rows:

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
-3 \\
0 \\
-3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
3
\end{array}\right]\right\}
$$

it is a three-dimensional subspace of \mathbb{R}^{5}

Example (cntd)

$$
A \rightarrow \cdots \rightarrow\left[\begin{array}{ccccc}
1 & 0 & -3 & 0 & -3 \\
0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=R
$$

Basis for $N(A)$. We write the general solution for $A \mathbf{x}=\mathbf{0}$.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
3 s+3 t \\
-2 s-t \\
s \\
-3 t \\
t
\end{array}\right]=s\left[\begin{array}{c}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
3 \\
-1 \\
0 \\
-3 \\
1
\end{array}\right]=s \mathbf{v}_{1}+t \mathbf{v}_{2}, \quad s, t \in \mathbb{R}
$$

$\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis since also linearly independent
It is a two-dimensional subspace of \mathbb{R}^{5}

Example (cntd)

$$
A \rightarrow \cdots \rightarrow\left[\begin{array}{ccccc}
1 & 0 & -3 & 0 & -3 \\
0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=R
$$

$R(A)=C S(A)$. operations on rows, but vectors are the columns. However the columns that have a leading one are columns that are linearly independent, because the RREF of the corresponding columns of A would have only one leading one is in every column.
The basis is $\left\{a_{1}, a_{2}, a_{4}\right\}$, ie, the three columns of the starting matrix
Any other vector added would be dependent
It is a three-dimensional subspace of \mathbb{R}^{4}

Basis of a Linear Space

If we are given k vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n}, how can we find a basis for $\operatorname{Lin}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}\right)$?

We can:

- create an $k \times n$ matrix (vectors as rows) and find a basis for the row space or
- create an $n \times k$ matrix (vectors as columns) and find a basis for the column space.

For both cases we put the matrix in reduced row echelon form.

Definition (Rank and nullity)
The rank of a matrix A is

$$
\operatorname{rank}(A)=\operatorname{dim}(R(A))
$$

The nullity of a matrix A is $\operatorname{nullity}(A)=\operatorname{dim}(N(A))$

Although subspaces of possibly different Euclidean spaces:
Theorem
If A is an $m \times n$ matrix, then

$$
\operatorname{dim}(R S(A))=\operatorname{dim}(C S(A))=\operatorname{rank}(A)
$$

Theorem (Rank-nullity theorem)
For an $m \times n$ matrix A

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

$$
(\operatorname{dim}(R(A))+\operatorname{dim}(N(A))=n)
$$

Summary

- Linear dependence and independence
- Determine linear dependency of a set of vertices, ie, find non-trivial lin. combination that equal zero
- Basis
- Find a basis for a linear space
- Find a basis for the null space, range and row space of a matrix (from its reduced echelon form)
- Dimension (finite, infinite)
- Rank-nullity theorem

