## DM559

Linear and Integer Programming

# Lecture 8 <br> Linear Transformations 

Marco Chiarandini<br>Department of Mathematics \& Computer Science<br>University of Southern Denmark

## Outline

\author{

1. Linear Transformations
}
2. Coordinate Change

## Resume

- Linear dependence and independence
- Determine linear dependency of a set of vertices, ie, find non-trivial lin. combination that equal zero
- Basis
- Find a basis for a linear space
- Find a basis for the null space, range and row space of a matrix (from its reduced echelon form)
- Dimension (finite, infinite)
- Rank-nullity theorem


## Outline

\author{

1. Linear Transformations
}

## 2. Coordinate Change

## Linear Transformations

Definition (Linear Transformation)
Let $V$ and $W$ be two vector spaces. A function $T: V \rightarrow W$ is linear if for all $\mathbf{u}, \mathbf{v} \in V$ and all $\alpha \in \mathbb{R}$ :

1. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$
2. $T(\alpha \mathbf{u})=\alpha T(\mathbf{u})$

A linear transformation is a linear function between two vector spaces

- If $V=W$ also known as linear operator
- Equivalent condition: $T(\alpha \mathbf{u}+\beta \mathbf{v})=\alpha T(\mathbf{u})+\beta T(\mathbf{v})$
- for all $\mathbf{0} \in V, T(\mathbf{0})=\mathbf{0}$

Example (Linear Transformations)

- vector space $V=\mathbb{R}, F_{1}(x)=p x$ for any $p \in \mathbb{R}$

$$
\begin{aligned}
\forall x, y \in \mathbb{R}, \alpha, \beta \in \mathbb{R}: F_{1}(\alpha x+\beta y) & =p(\alpha x+\beta y)=\alpha(p x)+\beta(p x) \\
& =\alpha F_{1}(x)+\beta F_{1}(y)
\end{aligned}
$$

- vector space $V=\mathbb{R}, F_{1}(x)=p x+q$ for any $p, q \in \mathbb{R}$ or $F_{3}(x)=x^{2}$ are not linear transformations

$$
T(x+y) \neq T(x)+T(y) \forall x, y \in \mathbb{R}
$$

- vector spaces $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}, m \times n$ matrix $A, T(x)=A \mathbf{x}$ for $\mathrm{x} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& T(\mathbf{u}+\mathbf{v})=A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}=T(\mathbf{u})+T(\mathbf{v}) \\
& T(\alpha \mathbf{u})=A(\alpha \mathbf{u})=\alpha A \mathbf{u}=\alpha T(\mathbf{u})
\end{aligned}
$$

## Example (Linear Transformations)

- vector spaces $V=\mathbb{R}^{n}, W: f: \mathbb{R} \rightarrow \mathbb{R} . T: \mathbb{R}^{n} \rightarrow W$ :

$$
\begin{aligned}
& T(\mathbf{u})=T\left(\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]\right)=p_{u_{1}, u_{2}, \ldots, u_{n}}=p_{\mathbf{u}} \\
& p_{u_{1}, u_{2}, \ldots, u_{n}}=u_{1} x^{1}+u_{2} x^{2}+u_{3} x^{3}+\cdots+u_{n} x^{n} \\
& p_{\mathbf{u}+\mathbf{v}}(x)=\cdots=\left(p_{\mathbf{u}}+p_{\mathbf{v}}\right)(x) \\
& p_{\alpha \mathbf{u}}(\mathbf{x})=\cdots=\operatorname{cop}_{u}(x)
\end{aligned}
$$

## Linear Transformations and Matrices

- any $m \times n$ matrix $A$ defines a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \rightsquigarrow T_{A}$
- for every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ there is a matrix $A$ such that $T(\mathbf{v})=A \mathbf{v} \rightsquigarrow A_{T}$


## Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ denote the standard basis of $\mathbb{R}^{n}$ and let $A$ be the matrix whose columns are the vectors $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), \ldots, T\left(\mathbf{e}_{n}\right)$ : that is,

$$
A=\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right) \ldots T\left(\mathbf{e}_{n}\right]\right.
$$

Then, for every $\mathrm{x} \in \mathbb{R}^{n}, T(\mathrm{x})=A \mathrm{x}$.
Proof: write any vector $x \in \mathbb{R}^{n}$ as lin. comb. of standard basis and then make the image of it.

Example
$T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
x+y+z \\
x-y \\
x+2 y-3 z
\end{array}\right]
$$

- The image of $\mathbf{u}=[1,2,3]^{T}$ can be found by substitution: $T(\mathbf{u})=[6,-1,-4]^{\top}$.
- to find $A_{T}$ :

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \quad T\left(\mathbf{e}_{3}\right)=\left[\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right] \\
& A=\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right) T\left(\mathbf{e}_{n}\right)\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 2 & -3
\end{array}\right]
\end{aligned}
$$

$T(\mathbf{u})=A \mathbf{u}=[6,-1,-4]^{\top}$.

## Linear Transformation in $\mathbb{R}^{2}$

- We can visualize them!
- Reflection in the $x$ axis:

$$
T:\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{c}
x \\
-y
\end{array}\right] \quad A_{T}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

- Stretching the plane away from the origin

$$
T(\mathbf{x})=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Rotation anticlockwise by an angle $\theta$

we search the images of the standard basis vector $\mathbf{e}_{1}, \mathbf{e}_{2}$

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}
a \\
c
\end{array}\right], \quad T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}
d \\
b
\end{array}\right]
$$

they will be orthogonal and with length 1.

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

For $\pi / 4$ :

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

## Identity and Zero Linear Transformations ineititice fammer

- For $T: V \rightarrow V$ the linear transformation such that $T(\mathbf{v})=\mathbf{v}$ is called the identity.
- if $V=\mathbb{R}^{n}$, the matrix $A_{T}=I$ (of size $n \times n$ )
- For $T: V \rightarrow W$ the linear transformation such that $T(\mathbf{v})=\mathbf{0}$ is called the zero transformation.
- If $V=\mathbb{R}^{n}$ and $W=\mathbb{R}^{m}$, the matrix $A_{T}$ is an $m \times n$ matrix of zeros.


## Composition of Linear Transformations

- Let $T: V \rightarrow W$ and $S: W \rightarrow U$ be linear transformations.

The composition of $S T$ is again a linear transformation given by:

$$
S T(\mathbf{v})=S(T(\mathbf{v}))=S(\mathbf{w})=\mathbf{u}
$$

where $\mathbf{w}=T(\mathbf{v})$

- $S T$ means do $T$ and then do $S: V \xrightarrow{T} W \xrightarrow{S} U$
- if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ in terms of matrices:

$$
S T(\mathbf{v})=S(T(\mathbf{v}))=S\left(A_{T} \mathbf{v}\right)=A_{S} A_{T} \mathbf{v}
$$

note that composition is not commutative

## Combinations of Linear Transformations Lhand Tantismaiom

- If $S, T: V \rightarrow W$ are linear transformations between the same vector spaces, then $S+T$ and $\alpha S, \alpha \in \mathbb{R}$ are linear transformations.
- hence also $\alpha S+\beta T, \alpha, \beta \in \mathbb{R}$ is


## Inverse Linear Transformations

- If $V$ and $W$ are finite-dimensional vector spaces of the same dimension, then the inverse of a lin. transf. $T: V \rightarrow W$ is the lin. transf such that

$$
T^{-1}(T(v))=\mathbf{v}
$$

- $\ln \mathbb{R}^{n}$ if $T^{-1}$ exists, then its matrix satisfies:

$$
T^{-1}(T(v))=A_{T^{-1}} A_{T} \mathbf{v}=/ \mathbf{v}
$$

that is, $T^{-1}$ exists iff $\left(A_{T}\right)^{-1}$ exists and $A_{T-1}=\left(A_{T}\right)^{-1}$
(recall that if $B A=I$ then $B=A^{-1}$ )

- $\ln \mathbb{R}^{2}$ for rotations:

$$
A_{T^{-1}}=\left[\begin{array}{cc}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Example
Is there an inverse to $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
x+y+z \\
x-y \\
x+2 y-3 z
\end{array}\right] \\
& A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 2 & -3
\end{array}\right]
\end{aligned}
$$

Since $\operatorname{det}(A)=9$ then the matrix is invertible, and $T^{-1}$ is given by the matrix:

$$
A^{-1}=\frac{1}{9}\left[\begin{array}{ccc}
3 & 5 & 1 \\
3 & -4 & 1 \\
3 & -1 & -2
\end{array}\right] \quad T^{-1}\left(\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]\right)=\left[\begin{array}{l}
\frac{1}{3} u+\frac{5}{9} v+\frac{1}{9} w \\
\frac{1}{3} u-\frac{4}{9} v+\frac{1}{9} w \\
\frac{1}{3} u+\frac{1}{9} v-\frac{2}{9} w
\end{array}\right]
$$

## Linear Transformations from $V$ to $W$

Theorem
Let $V$ be a finite-dimensional vector space and let $T$ be a linear transformation from $V$ to a vector space $W$.
Then $T$ is completely determined by what it does to a basis of $V$.
Proof
(unique representation in $V$ implies unique representation in $T$ )

- If both $V$ and $W$ are finite dimensional vector spaces, then we can find a matrix that represents the linear transformation:
- suppose $V$ has $\operatorname{dim}(V)=n$ and basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ and $W$ has $\operatorname{dim}(W)=m$ and basis $S=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}\right\}$;
- coordinates of $\mathbf{v} \in V$ are $[\mathbf{v}]_{B}$ coordinates of $T(\mathbf{v}) \in W$ are $[T(\mathbf{v})]_{s}$
- we search for a matrix $A$ such that:

$$
[T(\mathbf{v})]_{S}=A[\mathbf{v}]_{B}
$$

- we find it by:

$$
\begin{aligned}
{[T(\mathbf{v})]_{S} } & =a_{1}\left[T\left(\mathbf{v}_{1}\right)\right]_{S}+a_{2}\left[T\left(\mathbf{v}_{2}\right)\right]_{S}+\cdots+a_{n}\left[T\left(\mathbf{v}_{n}\right)\right]_{S} \\
& =\left[\left[T\left(\mathbf{v}_{1}\right)\right]_{S}\left[T\left(\mathbf{v}_{2}\right)\right]_{S} \cdots\left[T\left(\mathbf{v}_{n}\right)\right]_{S}\right][\mathbf{v}]_{B}
\end{aligned}
$$

where $[\mathbf{v}]_{B}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]^{T}$

## Range and Null Space

Definition (Range and null space)
$T: V \rightarrow W$. The range $R(T)$ of $T$ is:

$$
R(T)=\{T(\mathbf{v}) \mid \mathbf{v} \in V\}
$$

and the null space (or kernel) $N(T)$ of $T$ is

$$
N(T)=\{\mathbf{v} \in V \mid T(\mathbf{v})=\mathbf{0}\}
$$

- the range is a subspace of $W$ and the null space of $V$.
- Matrix case, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ $R(T)=R(A) N(T)=N(A)$
- Rank-nullity theorem:

$$
\begin{aligned}
& \operatorname{rank}(T)=\operatorname{dim}(R(T)) \\
& \operatorname{nullity}(T)=\operatorname{dim}(N(T))
\end{aligned}
$$

$$
\operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim}(V)
$$

## Example

Construct a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with

$$
N(T)=\left\{t\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]: t \in \mathbb{R}\right\}, \quad R(T)=x y \text {-plane. }
$$

## Outline

## 1. Linear Transformations

2. Coordinate Change

## Coordinates

Recall:
Definition (Coordinates)
If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of a vector space $V$, then

- any vector $\mathbf{v} \in V$ can be expressed uniquely as $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$
- and the real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the coordinates of $\mathbf{v}$ wrt the basis $S$.

To denote the coordinate vector of $v$ in the basis $S$ we use the notation

$$
[\mathbf{v}]_{S}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]_{S}
$$

- In the standard basis the coordinates of $v$ are precisely the components of the vector $\mathbf{v}: \mathbf{v}=v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+\cdots+v_{n} \mathbf{e}_{n}$
- How to find coordinates of a vector v wrt another basis?


## Transition from Standard to Basis $B$

Definition (Transition Matrix)
Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis of $\mathbb{R}^{n}$. The coordinates of a vector x wrt $B, \mathbf{a}=\left[a, a_{2}, \ldots, a_{n}\right]^{T}=[\mathbf{x}]_{B}$, are found by solving the linear system:

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\ldots+a_{n} \mathbf{v}_{n}=\mathbf{x} \quad \text { that is } \quad \mathbf{x}=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots
\end{array} \mathbf{v}_{n}\right] \mathbf{a}
$$

We call $P$ the matrix whose columns are the basis vectors:

$$
P=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]
$$

Then for any vector $\mathrm{x} \in \mathbb{R}^{n}$

$$
\mathbf{x}=P[\mathbf{x}]_{B} \quad \text { transition matrix from } B \text { coords to standard coords }
$$

moreover $P$ is invertible (columns are a basis):

$$
[\mathbf{x}]_{B}=P^{-1} \mathbf{x} \quad \text { transition matrix from standard coords to } B \text { coords }
$$

Example

$$
\begin{aligned}
& B=\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]\right\} \quad[\mathbf{v}]_{B}=\left[\begin{array}{c}
4 \\
1 \\
-5
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 2 \\
-1 & 4 & 1
\end{array}\right]
\end{aligned}
$$

$\operatorname{det}(P)=4 \neq 0$ so $B$ is a basis of $\mathbb{R}^{3}$ standard coordinates of $\mathbf{v}$ :

$$
\begin{aligned}
& \mathbf{v}=4\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]-5\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
-9 \\
-3 \\
-5
\end{array}\right] \\
& \mathbf{v}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 2 \\
-1 & 4 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
1 \\
-5
\end{array}\right]_{B}=\left[\begin{array}{l}
-9 \\
-3 \\
-5
\end{array}\right]
\end{aligned}
$$

Example (cntd)

$$
B=\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]\right\}, \quad[\mathbf{x}]=\left[\begin{array}{c}
5 \\
7 \\
-3
\end{array}\right]
$$

$B$ coordinates of vector x :

$$
\left[\begin{array}{c}
5 \\
7 \\
-3
\end{array}\right]=a_{1}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+a_{2}\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]+a_{3}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

either we solve $P \mathrm{a}=\mathrm{x}$ in a by Gaussian elimination or we find the inverse $P^{-1}$ :

$$
[\mathbf{x}]_{B}=P^{-1} \mathbf{x}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]_{B} \quad \text { check the calculation }
$$

What are the $B$ coordinates of the basis vector? ( $[1,0,0],[0,1,0],[0,0,1])$

## Change of Basis

Since $T(\mathbf{x})=P \mathbf{x}$ then $T\left(\mathbf{e}_{i}\right)=\mathbf{v}_{i}$, ie, $T$ maps standard basis vector to new basis vectors

## Example

Rotate basis in $\mathbb{R}^{2}$ by $\pi / 4$ anticlockwise, find coordinates of a vector wrt the new basis.

$$
A_{T}=\left[\begin{array}{cc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Since the matrix $A_{T}$ rotates $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$, then $A_{T}=P$ and its columns tell us the coordinates of the new basis and $\mathbf{v}=P[\mathbf{v}]_{B}$ and $[\mathbf{v}]_{B}=P^{-1} \mathbf{v}$. The inverse is a rotation clockwise:

$$
P^{-1}=\left[\begin{array}{cc}
\cos \left(-\frac{\pi}{4}\right) & -\sin \left(-\frac{\pi}{4}\right) \\
\sin \left(-\frac{\pi}{4}\right) & \cos \left(-\frac{\pi}{4}\right)
\end{array}\right]=\left[\begin{array}{cc}
\cos \left(\frac{\pi}{4}\right) & \sin \left(\frac{\pi}{4}\right) \\
-\sin \left(\frac{\pi}{4}\right) & \cos \left(\frac{\pi}{4}\right)
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

## Example (cntd)

Find the new coordinates of a vector $\mathrm{x}=[1,1]^{\top}$

$$
[\mathbf{x}]_{B}=P^{-1} \mathbf{x}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\sqrt{2} \\
0
\end{array}\right]
$$

## Change of basis from $B$ to $B^{\prime}$

Given a basis $B$ of $\mathbb{R}^{n}$ with transition matrix $P_{B}$, and another basis $B^{\prime}$ with transition matrix $P_{B^{\prime}}$, how do we change from coords in the basis $B$ to coords in the basis $B^{\prime}$ ?
coordinates in $B \xrightarrow{v=P_{B}[v]_{B}}$ standard coordinates $\xrightarrow{[v]_{B^{\prime}}=P_{B^{\prime}}^{-1} v}$ coordinates in $B^{\prime}$

$$
\begin{aligned}
& {[\mathbf{v}]_{B^{\prime}}=P_{B^{\prime}}^{-1} P_{B}[\mathbf{v}]_{B}} \\
& M=P_{B^{\prime}}^{-1} P_{B}=P_{B^{\prime}}^{-1}\left[\begin{array}{llllll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}
\end{array}\right] \stackrel{e x 7 s h 3}{=}\left[\begin{array}{lllll}
P_{B^{\prime}}^{-1} \mathbf{v}_{1} & P_{B^{\prime}}^{-1} \mathbf{v}_{2} & \ldots & P_{B^{\prime}}^{-1} \mathbf{v}_{n}
\end{array}\right]
\end{aligned}
$$

Theorem
If $B$ and $B^{\prime}$ are two bases of $\mathbb{R}^{n}$, with

$$
B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}
$$

then the transition matrix from $B$ coordinates to $B^{\prime}$ coordinates is given by

$$
M=\left[\begin{array}{llll}
{\left[\mathbf{v}_{1}\right]_{B^{\prime}}} & {\left[\mathbf{v}_{2}\right]_{B^{\prime}}} & \cdots & \left.\left[\mathbf{v}_{n}\right]_{B^{\prime}}\right]
\end{array}\right]
$$

(the columns of $M$ are the $B^{\prime}$ coordinates of the basis $B$ )

Example

$$
B=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} \quad S=\left\{\left[\begin{array}{l}
3 \\
1
\end{array}\right],\left[\begin{array}{l}
5 \\
2
\end{array}\right]\right\}
$$

are basis of $\mathbb{R}^{2}$, indeed the corresponding transition matrices from standard basis:

$$
P=\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right] \quad Q=\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]
$$

have $\operatorname{det}(P)=3, \operatorname{det}(Q)=1$. Hence, lin. indep. vectors.
We are given

$$
[\mathbf{x}]_{B}=\left[\begin{array}{c}
4 \\
-1
\end{array}\right]_{B}
$$

find its coordinates in $S$.

Example (cntd)

1. find first the standard coordinates of $x$

$$
\mathbf{x}=4\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
-1
\end{array}\right]=\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

and then find $S$ coordinates:

$$
[\mathbf{x}]_{S}=Q^{-1} \mathbf{x}=\left[\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
5 \\
7
\end{array}\right]=\left[\begin{array}{c}
-25 \\
16
\end{array}\right]_{S}
$$

2. use transition matrix $M$ from $B$ to $S$ coordinates:

$$
\mathbf{v}=P[\mathbf{v}]_{B} \quad \text { and } \quad \mathbf{v}=Q[\mathbf{v}]_{S} \quad \rightsquigarrow \quad[\mathbf{v}]_{S}=Q^{-1} P[\mathbf{v}]_{B}:
$$

$$
\begin{aligned}
& M=Q^{-1} P=\left[\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-8 & -7 \\
5 & 4
\end{array}\right] \\
& {[\mathbf{x}]_{S}=\left[\begin{array}{cc}
-8 & -7 \\
5 & 4
\end{array}\right]\left[\begin{array}{c}
4 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-25 \\
16
\end{array}\right]_{S}}
\end{aligned}
$$

