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I arc consistency does not remove all inconsistencies: even if a CSP is arc
consistent there might be no solution

I arc consistency deals with each constraint separately

I stronger consistencies techniques are studied:
I path consistency (generalizes arc consistency to arbitrary binary

constraints)
I restricted path consistency
I k-consistency
I (i , j)-consistent
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Given P = 〈X ,D, C〉 normalized:

I Given two variables xi , xj , the pair (vi , vj) ∈ D(xi )× D(xj) is p-path
consistent iff forall Y = (xi = xk1 , xk2 , . . . , xkp = xj) with Ckq ,kq+1 ∈ C
∃τ : τ [Y ] = (vi = vk1 , . . . , vkp = vj) ∈ πY (D) and
(vkq , vkq+1) ∈ Ckq ,kq+1 , q = 1, . . . , p − 1

I the CSP P is p-path consistent iff for any (xi , xj), i 6= j any locally
consistent pair of values (ie, satisfying all binary constraints between
xi , xj) is p-path consistent.

Example

P = 〈X = (x1, x2, x3),D(xi ) = {1, 2}, C ≡ {x1 6= x2, x2 6= x3}〉

Not path consistent: e.g., for (x1, 1), (x3, 2) there is no x2
P = 〈X ,D, C ∪ {x1 = x3}〉 is path consistent (local consistency of x1, x3
removes values x1 6= x3)
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Alternative definition:

I constraint composition:
Cx1,x3 = Cx1,x2 · Cx2,x3 = {(a, b) | ∃c , (a, c) ∈ Cx1,x2 , (c , b) ∈ Cx2,x3)}

I A normalized CSP P is 2-path consistent if for each subset {x1, x2, x3}
of its variables we have Cx1,x3 ⊆ Cx1x2 · Cx2x3

I Note: the sequence is arbitrary and the order irrelevant hence 6
conditions needs to be considered

I A CSP without binary constraints is trivially path consistent
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Path Consistency rule 1 (propagator):

〈Cxy ,Cxz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)〉
〈C ′xy ,Cxz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)〉

where C ′xy := Cxy ∩ Cxz · Czy
Path Consistency rule 2 (propagator):

〈Cxy ,Cxz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)〉
〈Cxy ,C ′xz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)〉

where C ′xz := Cxz ∩ Cxy · Cyz
Path Consistency rule 3 (propagator):

〈Cxy ,Cxz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)〉
〈Cxy ,Cxz ,C ′yz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)〉

where C ′yz := Cyz ∩ Cyx · Cxz
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Example

〈x < y , y < z , x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [6..10]〉

is path consistent. Indeed:

Cx,z ={(a, c) | a < c , a ∈ [0..4], c ∈ [6..10]}
Cx,y ={(a, b) | a < b, a ∈ [0..4], b ∈ [1..5]}
Cy ,z ={(b, c) | b < c , b ∈ [1..5], c ∈ [6..10]}

Example

〈x < y , y < z , x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]〉

is not path consistent. Indeed:
Cx,z = {(a, c) | a < c , a ∈ [0..4], c ∈ [5..10]} and for 4 ∈ [0..4] and
5 ∈ [5..10] no b ∈ [1..5] such that 4 < b and b < 5.
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The p-path consistency defined earlier generalizes 2-path consistency:
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2-path consistency if the path has length 2

I CSP is p-path consistent ⇐⇒ 2-path consistent (Montanari, 1974).
Proof by induction.

I Hence, sufficient to enforce consistency on paths of length 2.

I path consistency algorithms work with path of length two only and, like
AC algorithms, make these paths consistent with revisions.

I Even if PC eliminates more inconsistencies than AC, seldom used in
practice because of efficiency issues

I PC requires extensional representation of constraints and hence huge
amount memory.

I Restricted PC does AC and PC only when a variable is left with one
value.
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Given P = 〈X ,D, C〉, and set of variables Y ⊆ X with |Y | = k − 1:

I a locally consistent instantiation I on Y is k-consistent iff for any kth
variable xik ∈ X \ Y ∃ a value vik ∈ D(xik ) : I ∪ {xik , vik} is locally
consistent

I the CSP P is k-consistent iff for all Y of k − 1 variables any locally
consistent I on Y is k-consistent.

Example

In general CSP, arc-consistent 6= 2-consistent

D(x1) = D(x2) = {1, 2, 3}, x1 ≤ x2, x1 6= x2

arc consistent, every value has a support on one constraint
not 2-consistent, x1 = 3 cannot be extended to x2 and x2 = 1 not to x1 with
both constraints
arc consistency: each binary constraint separately taken is not violated
2-consistency: any constraint is not violated
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Example

D(xi ) = {1, 2}, i = 1, 2, 3; C = {(1, 1, 1), (2, 2, 2)}

is P path consistent?
Yes because no binary constraint such that X (C ) ⊆ Y
is P 3-consistent? No, because (x1, 1), (x2, 2) is locally consistent but cannot
be extended consistently to x3.

Example

〈D(x) = [1..2],D(y) = [1..2],D(z) = [2..4]; C = {x 6= y , x + y = z}〉

I 1-consistent?
I 2-consistent?
I 3-consistent?
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I A node consistent normalized CSP is arc consistent iff it is 2-consistent

I A node consistent normalized binary CSP is path consistent iff it is
3-consistent

That is, if the CSP is normalized:

I node consistency corresponds to 1-consistency

I arc consistency corresponds to 2-consistency

I path consistency corresponds to 3-consistency
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However, in general CSP, no relationship between k-consistency and
l -consistency for k 6= l exists:

I for any k > 1, there exists an inconsistent CSP on k variables that is
(k − 1)-consistent but not k-consistent

I for any k > 2, there exists a consistent CSP on k variables that is not
(k − 1)-consistent but is k-consistent

I for any k > 2, there exists an inconsistent CSP on k variables that is
k-consistent

I for any k > 2, there exists a consistent CSP on k variables that is not
k-consistent
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Example
I 〈x1 6= x2, x2 6= x3, x1 6= x3; x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0, 1}〉
I 〈x1 6= x2, x1 6= x3; x1 ∈ {a, b}, x2 ∈ {a}, ..., xk ∈ {a}〉 every

(k − 1)-consistent instantiation is a restriction of the consistent
instantiation (b, a, a, . . . , a)

I 〈x1 6= x2, x2 6= x3, x1 6= x3; x1 ∈ {1}, x2 ∈ {1}, x3 ∈ {1}〉
I 〈x1 6= x2, x2 6= x3, x1 6= x3; x1 ∈ {1}, x2 ∈ {1, 2, 3}, x3 ∈ {1, 2, 3}〉
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I P is strongly k-consistent iff it is j-consistent ∀j ≤ k

I constructing one requires O(nkdk) time and O(nk−1dk−1) space.

I if P is strongly n-consistent then it is globally consistent

I (i , j)-consistent: any consistent instantiation of i different variables can
be extended to a consistent instantiation including any j additional
variables
k consistency ≡ (k − 1, 1) consistent

I strongly (i , j)-consistent

16



Higher Order Consistencies
Weaker arc consistenciesOutline

1. Higher Order Consistencies

2. Weaker arc consistencies

17



Higher Order Consistencies
Weaker arc consistenciesWeaker arc consistencies

I reduce calls to Revise in coarse-grained algorithms (Forward Checking)
I reduce amount of work of Revise (Bound consistency)
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I Uses some linear ordering on the considered variables.

I Requires existence of supports only ’in one direction’

I A binary CSP P is directionally arc consistent (DAC) according to
ordering o = (x1, . . . , xkn ) on X , where (k1, . . . , kn) is a permutation of
(1, . . . , n) iff for all Cxi ,xj ∈ C, if xi <o xj then xi is arc consistent on
Cxi ,xj .

I CSP is dir. arc consistent if it is closed under application of arc
consistency rule 1.

Example

〈x < y ; x ∈ [2..10], y ∈ [3..7]〉

not arc consistent but directionally arc consistent for the order (y , x)
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Given P binary and Y ⊆ X : |D(xi )| = 1∀xi ∈ Y :

I P is forward checking consistent according to instantiation I on Y iff it
is locally consistent and for all xi ∈ Y , for all xj ∈ X \ Y for all
C (xi , xj) ∈ C is arc consistent on C (xi , xj).

(all constraints between assigned and not assigned variables are
consistent.)

I O(ed) time (Revise called only once per arc)
I Extension to non-binary constraints
I Example:

〈D(x1) = D(x2) = [1..5],D(x3) = [1..3]; C = {x1 < x2, x2 = x3, x1 > x3}〉

after x1 = 3
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Defined only by procedure, not by fixed point definition

Algorithm partial lookahead and full lookahead
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I domains inherit total ordering on Z,
minD(x) and maxD(x) called bounds of D(x)

I Given P and C ,
a bounded support τ on C is a tuple that satisfies C and such that for
all xi ∈ X (C ), minD(xi ) ≤ τ [xi ] ≤ maxD(xi ),
that is, τ ∈ C ∩ πX (C)(D I ) (instead of D)

D I (xi ) = {v ∈ Z | min
D

(xi ) ≤ v ≤ max
D

(xi )}

I C is bound(Z) consistent iff ∀xi ∈ X its bounds belong to a bounded
support on C

I C is range consistent iff ∀xi ∈ X all its values belong to a bounded
support on C

I C is bound(D) consistent iff ∀xi ∈ X its bounds belong to a support on
C
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I GAC < (bound(D), range) < bound(Z) (strictly stronger)
bound(D) and range are incomparable

I most of the time gain in efficiency

Example

sum(x1, . . . , xk , k)

GAC is NP-complete (reduction from SubSet problem).
But bound(Z) is polynomial: test ∀1 ≤ i ≤ n:
minD(xi ) ≥ k −

∑
j 6=i maxD(xj)

maxD(xi ) ≤ k −
∑

j 6=i minD(xj)
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