DM841 Discrete Optimization

Part I Lecture 14 Further Notions of Local Consistency

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Higher Order Consistencies

2. Weaker arc consistencies

Outline

1. Higher Order Consistencies

2. Weaker arc consistencies

Higher Order Consistencies

- arc consistency does not remove all inconsistencies: even if a CSP is arc consistent there might be no solution
- ▶ arc consistency deals with each constraint separately
- stronger consistencies techniques are studied:
 - path consistency (generalizes arc consistency to arbitrary binary constraints)
 - restricted path consistency
 - ► *k*-consistency
 - ► (*i*, *j*)-consistent

Path consistency

Given $\mathcal{P} = \langle X, \mathcal{D}, \mathcal{C} \rangle$ normalized:

- ▶ Given two variables x_i, x_j , the pair $(v_i, v_j) \in D(x_i) \times D(x_j)$ is p-path consistent iff forall $Y = (x_i = x_{k_1}, x_{k_2}, \dots, x_{k_p} = x_j)$ with $C_{k_q, k_{q+1}} \in \mathcal{C}$ $\exists \tau : \tau[Y] = (v_i = v_{k_1}, \dots, v_{k_p} = v_j) \in \pi_Y(\mathcal{D})$ and $(v_{k_q}, v_{k_{q+1}}) \in C_{k_q, k_{q+1}}, \ q = 1, \dots, p-1$
- ▶ the CSP \mathcal{P} is p-path consistent iff for any (x_i, x_j) , $i \neq j$ any locally consistent pair of values (ie, satisfying all binary constraints between x_i, x_j) is p-path consistent.

Example

$$\mathcal{P} = \langle X = (x_1, x_2, x_3), D(x_i) = \{1, 2\}, \mathcal{C} \equiv \{x_1 \neq x_2, x_2 \neq x_3\} \rangle$$

Not path consistent: e.g., for $(x_1,1),(x_3,2)$ there is no x_2 $\mathcal{P}=\langle X,\mathcal{D},\mathcal{C}\cup\{x_1=x_3\}\rangle$ is path consistent (local consistency of x_1 , x_3 removes values $x_1\neq x_3$)

Alternative definition:

constraint composition:

$$C_{x_1,x_3} = C_{x_1,x_2} \cdot C_{x_2,x_3} = \{(a,b) \mid \exists c, (a,c) \in C_{x_1,x_2}, (c,b) \in C_{x_2,x_3}\}\}$$

- ▶ A normalized CSP \mathcal{P} is 2-path consistent if for each subset $\{x_1, x_2, x_3\}$ of its variables we have $C_{x_1, x_2} \subseteq C_{x_1, x_2} \cdot C_{x_2, x_3}$
- Note: the sequence is arbitrary and the order irrelevant hence 6 conditions needs to be considered
- ► A CSP without binary constraints is trivially path consistent

Path Consistency rule 1 (propagator):

$$\langle C_{xy}, C_{xz}, C_{yz}; x \in D(x), y \in D(y), z \in D(z) \rangle$$
$$\langle C'_{xy}, C_{xz}, C_{yz}; x \in D(x), y \in D(y), z \in D(z) \rangle$$

where $C'_{xy} := C_{xy} \cap C_{xz} \cdot C_{zy}$ Path Consistency rule 2 (propagator):

$$\frac{\langle C_{xy}, C_{xz}, C_{yz}; x \in D(x), y \in D(y), z \in D(z) \rangle}{\langle C_{xy}, C'_{xz}, C_{yz}; x \in D(x), y \in D(y), z \in D(z) \rangle}$$

where $C'_{xz} := C_{xz} \cap C_{xy} \cdot C_{yz}$ Path Consistency rule 3 (propagator):

$$\langle C_{xy}, C_{xz}, C_{yz}; x \in D(x), y \in D(y), z \in D(z) \rangle$$
$$\langle C_{xy}, C_{xz}, C'_{yz}; x \in D(x), y \in D(y), z \in D(z) \rangle$$

where
$$C'_{yz} := C_{yz} \cap C_{yx} \cdot C_{xz}$$

7

Example

$$\langle x < y, y < z, x < z; x \in [0..4], y \in [1..5], z \in [6..10] \rangle$$

is path consistent. Indeed:

$$C_{x,z} = \{(a,c) \mid a < c, a \in [0..4], c \in [6..10]\}$$

$$C_{x,y} = \{(a,b) \mid a < b, a \in [0..4], b \in [1..5]\}$$

$$C_{y,z} = \{(b,c) \mid b < c, b \in [1..5], c \in [6..10]\}$$

Example

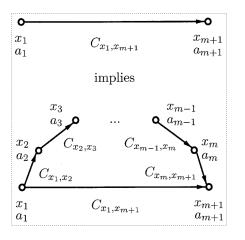
$$\langle x < y, y < z, x < z; x \in [0..4], y \in [1..5], z \in [5..10] \rangle$$

is not path consistent. Indeed:

$$C_{x,z} = \{(a,c) \mid a < c, a \in [0..4], c \in [5..10]\}$$
 and for $4 \in [0..4]$ and $5 \in [5..10]$ no $b \in [1..5]$ such that $4 < b$ and $b < 5$.

p-path consistency

The p-path consistency defined earlier generalizes 2-path consistency:



2-path consistency if the path has length 2

- ► CSP is p-path consistent ⇔ 2-path consistent (Montanari, 1974). Proof by induction.
- ▶ Hence, sufficient to enforce consistency on paths of length 2.
- ▶ path consistency algorithms work with path of length two only and, like AC algorithms, make these paths consistent with revisions.
- Even if PC eliminates more inconsistencies than AC, seldom used in practice because of efficiency issues
- PC requires extensional representation of constraints and hence huge amount memory.
- Restricted PC does AC and PC only when a variable is left with one value.

k-consistency

Given $\mathcal{P} = \langle X, \mathcal{D}, \mathcal{C} \rangle$, and set of variables $Y \subseteq X$ with |Y| = k - 1:

- ▶ a locally consistent instantiation I on Y is k-consistent iff for any kth variable $x_{i_k} \in X \setminus Y \exists$ a value $v_{i_k} \in D(x_{i_k}) : I \cup \{x_{i_k}, v_{i_k}\}$ is locally consistent
- ▶ the CSP \mathcal{P} is k-consistent iff for all Y of k-1 variables any locally consistent I on Y is k-consistent.

Example

In general CSP, arc-consistent \neq 2-consistent

$$D(x_1) = D(x_2) = \{1, 2, 3\}, \qquad x_1 \le x_2, x_1 \ne x_2$$

arc consistent, every value has a support on one constraint not 2-consistent, $x_1=3$ cannot be extended to x_2 and $x_2=1$ not to x_1 with both constraints

arc consistency: each binary constraint separately taken is not violated 2-consistency: any constraint is not violated

Example

$$D(x_i) = \{1, 2\}, i = 1, 2, 3; C = \{(1, 1, 1), (2, 2, 2)\}$$

is \mathcal{P} path consistent?

Yes because no binary constraint such that $X(C) \subseteq Y$ is \mathcal{P} 3-consistent? No, because $(x_1,1),(x_2,2)$ is locally consistent but cannot be extended consistently to x_3 .

Example

$$\langle D(x) = [1..2], D(y) = [1..2], D(z) = [2..4]; C = \{x \neq y, x + y = z\} \rangle$$

- ▶ 1-consistent?
- ▶ 2-consistent?
- ▶ 3-consistent?

- ▶ A node consistent normalized CSP is arc consistent iff it is 2-consistent
- A node consistent normalized binary CSP is path consistent iff it is 3-consistent

That is, if the CSP is normalized:

- node consistency corresponds to 1-consistency
- arc consistency corresponds to 2-consistency
- path consistency corresponds to 3-consistency

However, in general CSP, no relationship between k-consistency and l-consistency for $k \neq l$ exists:

- for any k > 1, there exists an inconsistent CSP on k variables that is (k-1)-consistent but not k-consistent
- for any k > 2, there exists a consistent CSP on k variables that is not (k-1)-consistent but is k-consistent
- for any k > 2, there exists an inconsistent CSP on k variables that is k-consistent
- for any k > 2, there exists a consistent CSP on k variables that is not k-consistent

Example

- $\langle x_1 \neq x_2, x_2 \neq x_3, x_1 \neq x_3; x_1 \in \{0, 1\}, x_2 \in \{0, 1\}, x_3 \in \{0, 1\} \rangle$
- ▶ $\langle x_1 \neq x_2, x_1 \neq x_3; x_1 \in \{a, b\}, x_2 \in \{a\}, ..., x_k \in \{a\} \rangle$ every (k-1)-consistent instantiation is a restriction of the consistent instantiation (b, a, a, ..., a)
- $\langle x_1 \neq x_2, x_2 \neq x_3, x_1 \neq x_3; x_1 \in \{1\}, x_2 \in \{1\}, x_3 \in \{1\} \rangle$

- ▶ P is strongly k-consistent iff it is j-consistent $\forall j \leq k$
- ▶ constructing one requires $O(n^k d^k)$ time and $O(n^{k-1} d^{k-1})$ space.
- \blacktriangleright if \mathcal{P} is strongly *n*-consistent then it is globally consistent
- (i,j)-consistent: any consistent instantiation of i different variables can be extended to a consistent instantiation including any j additional variables

k consistency $\equiv (k-1,1)$ consistent

▶ strongly (i, j)-consistent

Outline

1. Higher Order Consistencies

2. Weaker arc consistencies

Weaker arc consistencies

- ▶ reduce calls to Revise in coarse-grained algorithms (Forward Checking)
- reduce amount of work of Revise (Bound consistency)

Directional Arc Consistency

- ▶ Uses some linear ordering on the considered variables.
- ▶ Requires existence of supports only 'in one direction'
- ▶ A binary CSP \mathcal{P} is directionally arc consistent (DAC) according to ordering $o = (x_1, \ldots, x_{k_n})$ on X, where (k_1, \ldots, k_n) is a permutation of $(1, \ldots, n)$ iff for all $C_{x_i, x_j} \in \mathcal{C}$, if $x_i <_o x_j$ then x_i is arc consistent on C_{x_i, x_i} .
- ► CSP is dir. arc consistent if it is closed under application of arc consistency rule 1.

Example

$$\langle x < y; x \in [2..10], y \in [3..7] \rangle$$

not arc consistent but directionally arc consistent for the order (y, x)

Forward checking

Given \mathcal{P} binary and $Y \subseteq X : |D(x_i)| = 1 \forall x_i \in Y$:

▶ \mathcal{P} is forward checking consistent according to instantiation I on Y iff it is locally consistent and for all $x_i \in Y$, for all $x_j \in X \setminus Y$ for all $C(x_i, x_i) \in \mathcal{C}$ is arc consistent on $C(x_i, x_i)$.

(all constraints between assigned and not assigned variables are consistent.)

- ► O(ed) time (Revise called only once per arc)
- Extension to non-binary constraints
- Example:

$$\langle D(x_1) = D(x_2) = [1..5], D(x_3) = [1..3]; C = \{x_1 < x_2, x_2 = x_3, x_1 > x_3\} \rangle$$

after $x_1 = 3$

Other Lookahead Filtering

Defined only by procedure, not by fixed point definition

Algorithm partial lookahead and full lookahead

```
\begin{array}{lll} \textbf{procedure} \ PL(N,Y,x_i); \\ \textbf{1} \ FC(N,Y,x_i); \\ \textbf{2} \ \textbf{foreach} \ j \leftarrow i+1 \ \textbf{to} \ n \ \textbf{do} \\ \textbf{3} \quad \text{foreach} \ k \leftarrow j+1 \ \textbf{to} \ n \ | \ c_{jk} \in C_N \ \textbf{do} \\ \textbf{4} \quad \textbf{if} \ \textbf{not} \ \textit{Revise}(x_j,c_{jk}) \ \textbf{then} \ \text{return false} \\ \\ \textbf{procedure} \ FL(N,Y,x_i); \\ \textbf{5} \ FC(N,Y,x_i); \\ \textbf{6} \ \textbf{foreach} \ j \leftarrow i+1 \ \textbf{to} \ n \ \textbf{do} \\ \textbf{7} \quad \textbf{foreach} \ k \leftarrow i+1 \ \textbf{to} \ n, k \neq j \ | \ c_{jk} \in C_N \ \textbf{do} \\ \textbf{8} \quad \textbf{if} \ \textbf{not} \ \textit{Revise}(x_j,c_{jk}) \ \textbf{then} \ \text{return false} \\ \end{array}
```

Bound consistency

- ▶ domains inherit total ordering on Z, min_D(x) and max_D(x) called bounds of D(x)
- ▶ Given \mathcal{P} and \mathcal{C} , a bounded support τ on \mathcal{C} is a tuple that satisfies \mathcal{C} and such that for all $x_i \in X(\mathcal{C})$, $\min_D(x_i) \leq \tau[x_i] \leq \max_D(x_i)$, that is, $\tau \in \mathcal{C} \cap \pi_{X(\mathcal{C})}(D^I)$ (instead of D)

$$D^{I}(x_{i}) = \{v \in \mathbf{Z} \mid \min_{D}(x_{i}) \leq v \leq \max_{D}(x_{i})\}$$

- ▶ *C* is bound(**Z**) consistent iff $\forall x_i \in X$ its bounds belong to a bounded support on *C*
- ▶ *C* is range consistent iff $\forall x_i \in X$ all its values belong to a bounded support on *C*
- ▶ *C* is bound(**D**) consistent iff $\forall x_i \in X$ its bounds belong to a support on *C*

- ► GAC < (bound(D), range) < bound(Z) (strictly stronger) bound(D) and range are incomparable</p>
- most of the time gain in efficiency

Example

$$sum(x_1,\ldots,x_k,k)$$

GAC is NP-complete (reduction from SubSet problem).

But bound(**Z**) is polynomial: test $\forall 1 \leq i \leq n$:

$$\begin{aligned} \min_{D}(x_i) &\geq k - \sum_{j \neq i} \max_{D}(x_j) \\ \max_{D}(x_i) &\leq k - \sum_{j \neq i} \min_{D}(x_j) \end{aligned}$$

Higher Order Consistencies Weaker arc consistencies

References