
DM841

Discrete Optimization

Part I

Lecture 4
Introduction to Gecode

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Introduction to Gecode
Solving CSP – OverviewOutline

1. Introduction to Gecode
n-Queens, Grocery, Magic Squares

2. Solving CSP – Overview

2

Introduction to Gecode
Solving CSP – OverviewOutline

1. Introduction to Gecode
n-Queens, Grocery, Magic Squares

2. Solving CSP – Overview

3

Introduction to Gecode
Solving CSP – OverviewResume

I CP modeling examples

I Coloring with consecutive numbers
I Send More Money

I Constraint programming:
representation (modeling language) + reasoning (propagation + search)

I propagate, filtering, pruning
I search = backtracking + branching

I Gecode: model in Script class implementation
I Variables

declare as members
initialize in constructor
update in copy constructor

I Posting constraints (in constructor)
I Create branching (in constructor)
I Provide copy constructor (recomputation) and copy function (cloning)

4

Solving Scripts

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 44

Available Search Engines

� Returning solutions one by one for script
� DFS depth-first search
� BAB branch-and-bound
� Restart,)LDS

� Interactive, visual search
� Gist

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 45

Main Method: First Solution

�

int main(int argc,)char*)argv[])){
SendMoreMoney*)m)=)new)SendMoreMoney;
DFS<SendMoreMoney>)e(m);
delete)m;
if)(SendMoreMoney*)s)=)e.next())){

sf>print();)delete)s;
}
return)0;

}

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 46

Main Method: First Solution

�

int main(int argc,)char*)argv[])){
SendMoreMoney*)m)=)new)SendMoreMoney;
DFS<SendMoreMoney>)e(m);
delete)m;
if)(SendMoreMoney*)s)=)e.next())){

sf>print();)delete)s;
}
return)0;

}

create root
space for
search

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 47

Main Method: First Solution

�

int main(int argc,)char*)argv[])){
SendMoreMoney*)m)=)new)SendMoreMoney;
DFS<SendMoreMoney>)e(m);
delete)m;
if)(SendMoreMoney*)s)=)e.next())){

sf>print();)delete)s;
}
return)0;

}

create search
engine (takes

clone of m)

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 48

Main Method: First Solution

�

int main(int argc,)char*)argv[])){
SendMoreMoney*)m)=)new)SendMoreMoney;
DFS<SendMoreMoney>)e(m);
delete)m;
if)(SendMoreMoney*)s)=)e.next())){

sf>print();)delete)s;
}
return)0;

}

root space not
any longer

needed

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 49

Main Method: First Solution

�

int main(int argc,)char*)argv[])){
SendMoreMoney*)m)=)new)SendMoreMoney;
DFS<SendMoreMoney>)e(m);
delete)m;
if)(SendMoreMoney*)s)=)e.next())){

sf>print();)delete)s;
}
return)0;

}

search first
solution and

print it

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 50

Main Method: All Solutions

�

int main(int argc,)char*)argv[])){
SendMoreMoney*)m)=)new)SendMoreMoney;
DFS<SendMoreMoney>)e(m);
delete)m;
while)(SendMoreMoney*)s)=)e.next())){

sf>print();)delete)s;
}
return)0;

}

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 51

Gecode Gist

� A graphical tool for exploring the search tree
� explore tree step by step
� tree can be scaled
� double-clicking node prints information: inspection
� search for next solution, all solutions
� 0

� Best to play a little bit by yourself
� hide and unhide failed subtrees
� 0

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 52

Main Function: Gist

#include)<gecode/gist.hh>

int main(int argc,)char*)argv[])){
SendMoreMoney*)m)=)new)SendMoreMoney;
Gist::dfs(m);
delete)m;
return)0;

}

Gist Screenshot

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 53

Best Solution Search

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 55

Reminder: SMM++

� Find distinct digits for letters, such that

and MONEY maximal

SEND

+ MOST

= MONEY

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 56

Script for SMM++

� Similar, please try it yourself at home
� In the following, referred to by
SendMostMoney

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 57

Solving SMM++: Order

� Principle
� for each solution found, constrain remaining search for better

solution
� Implemented as additional method

virtual)void)constrain(const)Space&)b)){
�

}

� Argument b refers to so far best solution
� only take values from b
� never mix variables!

� Invoked on object to be constrained

3445647638 9:334;6<43=)!.&($%('#)>1.?@%0=)9!A=)BAC 8J

F&20&)L"&)>HHWW

H"4.&3%)H,"')$,#2.43"#E$,#2.)963$(i)\=K)>

$,#2.)9(#':,2.:,#(;i)=)e)

2.3."$\$32.*$,#2.)9(#':,2.:,#(;i1E\=K8

?#.@34 (E%OQPKF)#E%ORPKF)5E%OTPKF),E%OUPKF);E%OLPK8

?#.@34 =\(E=/%OQPKF)=\#E=/%ORPKF)=\5E=/%OTPKF)

=\,E=/%OUPKF)=\;E=/%OLPK8

"#. 5,#(;)e)EQMMMMI=\5/H3%EKcQMMMI=\,/H3%EKcQMMI=\#/H3%EKc

QMI=\(/H3%EKc=\;/H3%EKK8

6,2.EI.0"2F)QMMMMI5cQMMMI,cQMMI#cQMI(c; 1)5,#(;K8

J

10000*m+1000*o+100*n+10*e+y money

value of any next solution value of current best solution b

rel

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 59

Main Method: All Solutions

�

int main(int argc,)char*)argv[])){
SendMostMoney*)m)=)new)SendMostMoney;
BAB<SendMostMoney>)e(m);
delete)m;
while)(SendMostMoney*)s)=)e.next())){

sf>print();)delete)s;
}
return)0;

}

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 60

Main Function: Gist

#include)<gecode/gist.hh>

int main(int argc,)char*)argv[])){
SendMostMoney*)m)=)new)SendMostMoney;
Gist::bab(m);
delete)m;
return)0;

}

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 61

Summary: Solving

� Result-only search engines
� DFS,)BAB

� Interactive search engine
� Gist

� Best solution search uses constrain-method for
posting constraint

� Search engine independent of script and constrain-
method

Introduction to Gecode
Solving CSP – OverviewExercise

I Solve in Gecode the problem:

send+ more = money

What is the solution that maximizes money? How many solutions are
there for the decision version? Compare using lexicographic and first-fail
search. Which of the two search strategeis is the best?

I Repeat the analysis on this other instance of the problem:

ten+ ten+ forty = sixty

Is the conclusion the same as in the point above?

5

Introduction to Gecode
Solving CSP – OverviewOutline

1. Introduction to Gecode
n-Queens, Grocery, Magic Squares

2. Solving CSP – Overview

6

8-Queens

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 63

Problem Statement

� Place 8 queens on a chess board such that the
queens do not attack each other

� Straightforward generalizations
� place an arbitrary number: n Queens
� place as closely together as possible

�

�

�

�

�

�

�

�

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 64

What Are the Variables?

� Representation of position on board
� First idea: two variables per queen

� one for row
� one for column
� 2�n variables

� Insight: on each column there will be a
queen!

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 65

���������	������

� Have a variable for each column
� value describes row for queen
� n variables

� Variables: x0��0��x7

where xi � +���0���,

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 66

Other Possibilities

� For each field: number of queen
�)�����$(��"��&�"#'��"'�%�&'�"����
� n2 variables

� For each field on board: is there a queen on
the field?

� 848 variables
� variable has value 0: no queen
� variable has value 1: queen
� n2 variables

Introduction to Gecode
Solving CSP – OverviewOutline

1. Introduction to Gecode
n-Queens, Grocery, Magic Squares

2. Solving CSP – Overview

7

Introduction to Gecode
Solving CSP – OverviewGeneral Purpose Algorithms

Search algorithms

organize and explore the search tree

I Search tree with branching factor at the top level nd and at the next
level (n − 1)d . The tree has n! · dn leaves even if only dn possible
complete assignments.

I Insight: CSP is commutative in the order of application of any given set
of action (the order of the assignment does not influence final answer)

I Hence we can consider search algs that generate successors by
considering possible assignments for only a single variable at each node
in the search tree.
The tree has dn leaves.

Backtracking search

depth first search that chooses one variable at a time and backtracks when a
variable has no legal values left to assign.

8

Introduction to Gecode
Solving CSP – OverviewBacktrack Search

9

Introduction to Gecode
Solving CSP – OverviewBacktrack Search

I No need to copy solutions all the times but rather extensions and undo
extensions

I Since CSP is standard then the alg is also standard and can use general
purpose algorithms for initial state, successor function and goal test.

I Backtracking is uninformed and complete. Other search algorithms may
use information in form of heuristics

10

Introduction to Gecode
Solving CSP – OverviewGeneral Purpose Backtracking

Implementation refinements

1) [Search] Which variable should we assign next, and in what order should
its values be tried?

2) [Propagation] What are the implications of the current variable
assignments for the other unassigned variables?

3) [Search] When a path fails – that is, a state is reached in which a
variable has no legal values can the search avoid repeating this failure in
subsequent paths?

11

Introduction to Gecode
Solving CSP – OverviewSearch

1) Which variable should we assign next, and in what order should its values
be tried?

I Select-Initial-Unassigned-Variable
degree heuristic (reduces the branching factor) also used as tie breaker

I Select-Unassigned-Variable
Most constrained variable (DSATUR); fail-first heuristic;
Minimum remaining values (MRV) heuristic (speeds up pruning)

I Order-Domain-Values
least-constraining-value heuristic (leaves maximum flexibility for
subsequent variable assignments)

NB: If we search for all the solutions or a solution does not exists, then the
ordering does not matter.

12

Introduction to Gecode
Solving CSP – OverviewSearch

Branching (aka, Labelling)

1. Pick a variable x with at least two values
2. Pick value v from D(x)
3. Branch with

x = v
x ≤ v

x 6= v
x > v

The constraints for branching become part of the model in the
subproblems generated

The inner nodes (blue circles)
are choices, the red square leaf
nodes are failures, and the
green diamond leaf node is a
solution.

13

	Introduction to Gecode
	n-Queens, Grocery, Magic Squares

	Solving CSP – Overview

