
DM841

Discrete Optimization

Part I

Notions of Local Consistency

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

DefinitionsGoals

I Establish formalism around constraint handling

I Learning general constraint propagation algorithms

2

DefinitionsOutline

1. Definitions

3

DefinitionsReasoning with Constraints

Constraint Propagation, related notions:

I constraint relaxation
I filtering algorithms
I narrowing algorithms
I constraint inference
I simplification algorithms
I label inference
I local consistency enforcing
I rules iteration
I proof rules

4

Definitions

Local Consistency define properties that the constraint problem must satisfy
after constraint propagation

Rules Iteration defines properties on the process of propagation itself, that is,
kind and order of operations of reduction applied to the
problem

5

DefinitionsNotation and Terminology

Finite domains w.l.g. D ⊆ Z

Constraint C : relation on a (ordered) subsequence of variables

I X (C) = (xi1 , . . . , xi|X (C)|) is the scheme or scope of C
I |X (C)| is the arity of C (unary/binary/non-binary)
I C ⊆ Z|X (C)| containing combinations of valid values (or tuples)
τ ∈ Z|X (C)|

I constraint check: testing whether a τ satisfies C
I C: a t-tuple of constraints C = (C1, . . . ,Ct)

I expression
I extensional: specifies satisfying tuples (aka table or extensional via

DFA or TupleSet in gecode).
eg. c(x1, x2) = {(2, 2), (2, 3), (3, 2), (3, 3)}

I intensional: specifies the characteristic function. eg. alldiff(x1, x2, x3)

6

DefinitionsCSP
Input:

I Variables X = (x1, . . . , xn)

I Domain Expression D = {x1 ∈ D(x1), . . . , xn ∈ D(xn)}
I C finite set of constraints each on a subsequence Y of X .

C ∈ C on Y = (y1, . . . , yk) is C ⊆ D(y1)× . . .× D(yk)

a constrained satisfaction problem (CSP) is

P = 〈X , D, C〉

(v1, . . . , vn) ∈ D(x1)× . . .× D(xn) is a solution of P
if for each constraint Ci ∈ C on xi1 . . . , xim it is

(vi1 , . . . , vim) ∈ Ci

CSP normalized: iff two different constraints do not involve exactly the same vars
CSP binary iff for all Ci ∈ C, |X (C)| = 2

7

DefinitionsNotation and Terminology

Given a tuple τ on a sequence Y of variables and W ⊆ Y ,

I τ [W] is the restriction of τ to variables in W (ordered accordingly)
I τ [xi] is the value of xi in τ
I if X (C) = X (C ′) and C ⊆ C ′ then for all τ ∈ C the reordering of τ

according to X (C ′) satisfies C ′.

Example

C (x1, x2, x3) : x1 + x2 = x3
C ′(x1, x2, x3) : x1 + x2 ≤ x3

C ⊆ C ′

8

DefinitionsNotation and Terminology

I Given Y ⊆ X (C), πY (C) denotes the projection of C on Y . It contains
tuples on Y that can be extended to a tuple on X (C) satisfying C .

I given X (C1) = X (C2), the intersection C1 ∩ C2 contains the tuples τ
that satisfy both C1 and C2

I join of {C1 . . .Ck} is the relation with scheme ∪k
i=1X (Ci) that contains

tuples such that τ [X (Ci)] ∈ Ci for all 1 ≤ i ≤ k.

Example

P = 〈X = (x1, x2, x3, x4),D = {D(xi) = {1..5}, ∀i},
C = {C1 ≡ alldiff(x1, x2, x3),C2 ≡ x1 ≤ x2 ≤ x3,C3 ≡ x4 ≥ 2x2}〉

πx1,x2(C1) ≡ (x1 6= x2)
C1 ∩ C2 ≡ (x1 < x2 < x3)
join {C1, . . . ,C3} ≡ (x1 < x2 < x3 ∧ x4 ≥ 2x2)

9

DefinitionsNotation and Terminology
Given P = 〈X , D, C〉 the instantiation I is a tuple on Y = (x1, . . . , xk) ⊆ X :
((x1, v1), . . . , (xk , vk))

I I on Y is valid iff ∀xi ∈ Y , I [xi] ∈ D(xi)

I I on Y is locally consistent iff it is valid and for all C ∈ C with
X (C) ⊆ Y , I [X (C)] satisfies C (some constraints may have X (C) 6⊆ Y)

I a solution to P is an instantiation I on X (C) which is locally consistent
I I on Y is globally consistent if it can be extended to a solution, i.e.,

there exists s ∈ sol(P) with I = s[Y]

Example

P = 〈X = (x1, x2, x3, x4),D = {D(xi) = {1..5}, ∀i},
C = {C1 ≡ alldiff(x1, x2, x3),C2 ≡ x1 ≤ x2 ≤ x3,C3 ≡ x4 ≥ 2x2}〉

π{x1,x2}(C1) ≡ (x1 6= x2)
I1 = ((x1, 1), (x2, 2), (x4, 7)) is not valid
I2 = ((x1, 1), (x2, 1), (x4, 3)) is local consistent since C3 only one with X (C3) ⊆ Y
and I2[X (C3)] satisfies C3

I2 is not global consistent: sol(P) = {(1, 2, 3, 4), (1, 2, 3, 5)}
10

DefinitionsNotation and Terminology

I An instantiation I on P is globally consistent if it can be extended to a
solution of P, globally inconsistent otherwise.

I A globally inconsistent instantiation is also called a (standard) nogood.
(a partial instantiation that does not lead to a solution.)

I Remark: A locally inconsistent instantiation is a nogood. The reverse is
not necessarily true

11

DefinitionsExample

12

DefinitionsExample

12

DefinitionsNotation and Terminology

CSP solved by extending partial instantiations to global consistent ones and
backtracking at local inconsitencies is NP-complete!

Idea: make the problem more explicit (tighter)

P ′ � P iff XP′ = XP and any instantiation I on Y ⊆ XP locally inconsistent
for P is locally inconsistent for P ′.

Example

P =〈X = (x1, x2, x3),D = {D(xi) = [1..4],∀i},
C = {C1 ≡ x1 < x2,C2 ≡ x2 < x3,

C3 ≡ {(111), (123), (222), (333), (234)}}〉
P ′ =〈X ,D, C′〉, C′ = {C1,C2,C ′3 ≡ {(123)}}〉

P ′ � P: All locally inconsitent instantiations on Y ⊆ XP for P are locally
inconsistent for P ′. Indeed XP′ = XP , DP′ = D and
C1 = C ′1,C2 = C ′2,X (C3) = X (C ′3),C ′3 ⊂ C3.
However not all solutions are preserved!

13

Definitions

Example

P = 〈X = (x1, x2, x3),D = {D(xi) = [1..4],∀i},
C = {C1 ≡ x1 < x2,C2 ≡ x2 < x3,C3 ≡ {(111), (123), (222), (333)}}〉

P ′ = 〈X ,D, C′〉, C′ = {C1,C2,C ′3 ≡ {(123), (231), (312)}}

For any tuple τ on X (C) that does not satisfy C there exists a constraint C ′

in C′ with X (C ′) ⊆ X (C) such that τ [X (C ′)] 6∈ C ′ (τ local inconsistent).
Hence P ′ � P. But also P � P ′.
They are no-good equivalent.

 � does not define an order, just a preorder (antisymmetry does not hold.)

14

DefinitionsConstraint Propagation
Constraint Propagation transforms a problem P by tightening D, by
tightening constraints from C or by adding new constraints to C. It does not
remove redundant constraints which is a modeling task.

P’ is a tightening of P (and by implication P ′ � P) if
XP′ = XP , DP′ ⊆ D, ∀C ∈ C,∃C ′ ∈ C′,X (C ′) = X (C) and C ′ ⊆ C .

Note that in the previous example P ′ is not a tightening of P: C ′3 6⊆ of any
C ∈ C, neither viceversa. Tightening defines a non-strict order (preorder).

Example

P =〈X = (x1, x2, x3),D = {D(xi) = [1..4],∀i},
C = {C1 ≡ x1 < x2,C2 ≡ x2 < x3,

C3 ≡ {(111), (123), (222), (333), (234)}}〉
P ′ =〈X ,D, C′〉, C′ = {C1,C2,C ′3 ≡ {(123)}}〉

P ′ � P: XP′ = XP , DP′ = D and
C1 = C ′1,C2 = C ′2,X (C3) = X (C ′3),C ′3 ⊂ C3.

15

DefinitionsNotation and Terminology
SP is the space of all tightening for P

We are interested in the tightenings that preserve the set of solutions
(sol(P ′) = sol(P)) whose space is denoted Ssol

P and among them the
smallest (P∗ � P ′′ for all P ′′ ∈ Ssol

P .)

P∗ ∈ Ssol
P is globally consistent if any instantiation I on Y ⊆ X which is

locally consistent in P∗ can be extended to a solution of P.

Computing P∗ is exponential in time and space search a close P in
polynomial time and space constraint propagation

I Define a property Φ that states necessary conditions on instantiations for
solutions. Φ is called local consistency.

I Reduction rules: sufficient conditions to rule out values (or
instantiations) that will not be part of a solution (defined through a
consistency property Φ)
Rules iteration: set of reduction rules for each constraint that tighten
the problem

16

DefinitionsConstraint Propagation

In general, we reach a P’ that is Φ consistent by constraint propagation:

I tighten D
I tighten C, ex: x1 + x2 ≤ x3 x1 + x2 = x3

I add C to C
Focus on domain-based tightenings

17

DefinitionsDomain-based tightenings

The space SP of domain-based tightenings of P is the set of problems
P ′ = 〈X ′,D′, C′〉 such that XP′ = XP , DP′ ⊆ D, C′ = C

As before the task is:
Finding a tightening P∗ in Ssol

P ⊆ SP (the set that contains all problems that
preserve the solutions of P) such that:
forall xi ∈ XP , DP∗(xi) contains only values that belong to a solution itself,
i.e., DP∗(xi) = π{xi}(sol(P))

I Reduction rules:

D(xi)← D(xi)∩{vi |D(x1)×D(xj−1)×{vi}×. . .D(xj +1)×. . .D(xk)∩C 6= ∅}

(the rule is parameterised by a variable xi and a constraint C)
I Rules iteration (for all i)

18

Definitions

It is clearly NP-hard since it corresponds to solving P itself.
 hence polynomial reduction rules to approximate P∗

Apply rules iteration for each constraint. Domain-based reduction rules are
also called propagators.

Example

C = (|x1 − x2| = k)
Propagator: D(x1)← D(x1) ∩ [minD(x2)− k..maxD(x2) + k]

Rather than defining rules we define Φ: e.g., unary, arc, path, k-consistency

19

DefinitionsDomain-based local consistency

Domain-based local consistency property Φ specifies a necessary condition on
values to belong to solutions. We restrict to those stable under union.

A domain-based property Φ is stable under union iff for any Φ-consistent
problem P1 = 〈X ,D, C〉 and P2 = 〈X ,D, C〉 the problem
P ′ = 〈X ,D1 ∪ D2,C 〉 is Φ-consistent.

Example

Φ for each constraint C and variable xi ∈ X (C), at least half of the values in
D(xi) belong to a valid tuple satisfying C .

P1 = 〈X = (x1, x2),D = {D1(x1) = {1, 2},D1(x2) = {2}},C ≡ {x1 = x2}〉
P2 = 〈X = (x1, x2),D = {D2(x1) = {2, 3},D2(x2) = {2}},C ≡ {x1 = x2}〉

Both are Φ consistent but they are not stable under union.

20

DefinitionsDomain-based tightenings
Note: Not all Φ-consistent tightenings preserve the solutions
We search for the Φ-closure Φ(P) (the union of all Φ-consistent P ′ ∈ SP)
If Φ is stable under union, then Φ(P) is the unique domain-based
Φ-consistent tightening problem that contains all others.

sol(φ(P)) = sol(P)

Example

P = 〈X = (x1, x2, x3, x4),D = {D(xi) = {1, 2},∀i},
C = {C1 ≡ x1 ≤ x2,C2 ≡ x2 ≤ x3,C3 ≡ x1 6= x3}〉

Φ all values for all variables can be extended consistently to a second variable

P ′ = 〈X = (x1, x2, x3, x4),D = {D(x1) = 1,D(x2) = 1,D(x3) = 2,∀i},
C = {C1 ≡ x1 ≤ x2,C2 ≡ x2 ≤ x3,C3 ≡ x1 6= x3}〉

P’ is consistent but it does not contain (1, 2, 2) which is in sol(P)
Φ(P) : 〈X ,DΦ, C〉 with DΦ(x1) = 1,DΦ(x2) = {1, 2},DΦ(x3) = 2

21

DefinitionsDefinition

A set is closed under an operation if performance of that operation on
members of the set always produces a member of the same set.

A set is said to be closed under a collection of operations if it is closed under
each of the operations individually.

22

DefinitionsDomain-based tightenings

Proposition (Fixed Point): If a domain based consistency property Φ is
stable under union, then for any P, the P’ with DP′ obtained by iteratively
removing values that do not satisfy Φ until no such value exists is the
Φ-closure of P.

Contrary to P∗, Φ(P) can be computed by a greedy algorithm:

Corollary If a domain-based consistency property Φ is polynomial to check,
finding Φ(P) is polynomial as well.

enforcing Φ consistency ≡ finding closure Φ(P)

23

DefinitionsOrders

Domain-based tightenings define a partial order (poset) because isomorphic
to inclusion ⊆, which is a partial order

(For a, b, elements of a poset P, if a ≤ b or b ≤ a, then a and b are
comparable. Otherwise they are incomparable)

24

DefinitionsOrders

Possible to define a partial order also on the local consistency property:

Definition
I Φ1 is at least as strong as another Φ2 if for any P: Φ1(P) ≤ Φ2(P):

ie, XΦ1(P) = XΦ2(P), DΦ1(P) ⊆ DΦ2(P), CΦ1(P) = CΦ2(P)

(any instantiation I on Y ⊆ XΦ2(P) locally inconsistent in Φ2(P) is
locally inconsistent in Φ1(P))

I Φ1 is stricly stronger than Φ2 if it is at least as strong as and there
exists a P: Φ1(P) < Φ2(P).

I Φ1 and Φ2 are incomparable if there exists a P’ and P” such that
Φ1(P ′) < Φ2(P ′) and Φ2(P ′′) < Φ1(P ′′).

25

	Definitions

