DM841

Discrete Optimization

Part |
Lecture 13
Constraint Propagation Algorithms

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Resume

> Definitions
(CSP, restrictions, projections, istantiation, local consistency)

» Tigthtenings

> Global consistent (any instantiation local consistent can be extended to
a solution) needs exponential time
~ local consistency defined by condition ® of the problem

» Tightenings by constraint propagation: reduction rules + rules iterations

> reduction rules < @ consistency
> rules iteration: reach fixed point, that is, closure of all tightenings that
are ® consistent

Local Consistency

O utl i ne Arc Consistency Algorithms

1. Local Consistency

Local Consistency

Node Consistency R e naion ey Kigerchs

We call a CSP node consistent if for every variable x every unary constraint
on x coincides with the domain of x.

Example

» (C,x1>20,...,%,>0;xy €N, ..., x, €N)
and C does not contain other unary constraints
node consistent

» (C;x1>0,...,%,>0;x1 €N,... . x, € Z)

and C does not contain other unary constraints
not node consistent)

A CSP is node consistent iff it is closed under the applications of the Node
Consistency rule (propagator):
(C;x e D)
(C;xe CnD)

(the rule is parameterised by a variable x and a unary constraint C)

Local Consistency

Arc Consistency Arc Consistency Algorithms

Arc consistency: every value in a domain is consistent with every binary
constraint.

> C = c(x,y) with D = {D(x), D(y)} is arc consistent iff
» Va € D(x) there exists b € D(y) such that (a,b) € C
» Vb € D(y) there exists a € D(x) such that (a,b) € C

» P is arc consistent iff it is AC for all its binary constraints

In general arc consistency does not imply global consistency.
An arc consistent but inconsistent CSP:

#

x € {a, b} = y € {a, b}

A consistent but not arc consistent CSP:
O————0

x € {a, b} y e {a}

Local Consistency
C

Arc Consistency R Canermiancy Kgorithms

A CSP is arc consistent iff it is closed under the applications of the Arc
Consistency rules (propagators):

(C:x € D(x),y € D(y))
(Gx e D'(x),y € D(y))

where D'(x) :={a € D(x) | 3b € D(y),(a,b) € C}

(C;x € D(x),y € D(y))
(Cix € D(x),y € D'(y))
) (a; b)

(
where D'(y) :={b € D(y) | Ja € D(b) € C}

y €
y €

VAS
y e
x), (a,

Local Consistency

Generalized Arc Consistency (GAC) A comisene Alsoithme

Given arbitrary (non-normalized, non-binary) P, C € C, x; € X(C)

(Value) v € D(x;) is consistent with C in D iff 3 a valid tuple 7 for C:
v; = 7[x;]. 7 is called support for (x;, v;)

(Variable) D is GAC on C for x; iff all values in D(x;) are consistent with
CinD (ie., D(x) C TI'{X,.}(C N W{X(C)}('D)))

(Problem) P is GAC iff D is GAC for all vin X onall C €C

P is arc inconsistent iff the only domain tighter than D which
is GAC for all variables on all constraints is the empty set.

(aka, hyperarc consistency, domain consistency)

Local Consistency
Arc Consistency Algorithms

Example

(x=1ye{0,1},ze {0, 1};,C={xAy=12z})
is hyperarc consistent

(xe{0,1},y € {0,1},z=1,C={xAy=2z})
is not hyper-arc consistent

Example: arc consistency # 2-consistency, AC < 2C on non-normalized
binary CSP, and incomparable on arbitrary CSP (later)

Local Consistency

Generalized Arc Consistency Are Consisiency Algorthms

A CSP is arc consistent iff it is closed under the applications of the Arc
Consistency rules (propagators):

(Cix1 € D(x),...,xc € D(xk))

Outline

2. Arc Consistency Algorithms

Local Consistency
Arc Consistency Algorithms

11

Local Consistenc:

A rC C O n S i Ste n Cy Arc Conslstency A|gor|t|1ms

Arc Consistency rule 1 (propagator):
(Cix € D(x),y € D(y))
(Cix e D'(x),y € D(y))
where D'(x) := {a € D(x)|3b € D(y),(a,b) € C}

This can also be written as (x represents the join):

D(x) <= D(x) Ny (x(C, D(y)))

Arc Consistency rule 2 (propagator):
(Cix € D(x),y € D(y))
(Cix € D(x),y € D'(y))
where D'(y) := {b € D(y)|3a € D(x),(a, b) € C}

This can also be written as:

D(y) < D(y) Ny (%(C, D(x)))

12

Local Consistency

Generalized Arc Consistency Are Consistency Algerithms

(Generalized) Arc Consistency rule (propagator):

(C;x1 € D(x),...,xk € D(x«))
<C;X1 S D(X1), Lo, X1 € D(X,'_l),X,' < D,(X,'),X,'.H c D(X,'+1),. Xk € D(Xk)>

where D'(x;) == {a € D(x;)|3r € C,a = 7[x]}

This can also be written as:

D(X,') — D(X,') N 7T{X,.}(C N WX(C)('D))

13

Local Consistency

Exe rC i Se - B i n a I’y C S P Arc Consistency Algorithms

Theorem

Show how an arbitrary (non-binary) CSP can be polynomially converted into
an equivalent binary CSP.

14

. Local Consistenc:
AC 1 J— Red u Ct | On ru Ie Arc Consistency Ay|gorit|1ms

Revision: making a constraint arc consistent by propagating the domain from
a variable to anohter
Corresponds to:

D(x) = D(x) N7y ((C, D(y)))

for a given variable x and constraint C
Assume normalized network:

REVISE((z;), z;)

input: a subnetwork defined by two variables X = {z;,z;}, a distinguished variable z;,
domains: D; and D;, and constraint R;;

output: [;, such that, z; arc-consistent relative to z;

1. for each a; € D;

2 if there is no a; € D; such that (a;, a;) € Ry

3. then delete a; from D;

4 endif

5. endfor

Complexity:O(d?) or O(rd")
d values, r arity

15

AC1 — Rules Iteration Local Coprineercy

Arc Consistency Algorithms
Binary case

AC-1(R)

input: a network of constraints R = (X, D,C)

output: R’ which is the loosest arc-consistent network equivalent to R
1. repeat

2. for every pair {;,z;} that participates in a constraint

3 Revise((z;), z;) (or D; « D; Nnm(Ry; W D;))
4. Revise((z;),z;) (or D; «— D;Nm;(R;; X Dy))
5. endfor

6. until no domain is changed

» Complexity (Mackworth and Freuder, 1986): O(end?)
e number of arcs, n variables
(ed? each loop, a single succesful removal causes all loop again ~ nd
number of loops)

> best-case = O(ed)
» Arc-consistency is at least O(ed?) in the worst case

16

Arc Consistency Algorithms

AC3 (Macworth, 1977) Local Consistency

General case — Arc oriented (coarse-grained)

function Revise3(in x;: variable; c: constraint): Boolean ;

begin

1 CHANGE « false;

2 foreach v; € D(z:) do

3 if Ar € cN7x (o) (D) with T|z;] = v; then

4 remove v; from D(z;);

5 CHANGE « true;

6 return CHANGE ;
end

function AC3 /GAC3(in X: set): Boolean ;
begin
/¥ initalisation */;
7 Q — {(zi,c)|ceC,zi € X(c)}:
* propagation */;
8 while @ # @ do
select and remove (z;, c) from Q;

O(er*d 1) time
O(er) space

£

10 if Revise(zs,c) then

11 if D(z;) = 0 then return false ;

12 else Q — QU {(z;,¢) | €eCA #eAx,x; € X(E)NG £ i)
13 return troe ;

end

17

AC 3 Local Consistency
Arc Consistency Algorithms

Example

P = <X - (X,y,Z), D= {D(X) - D(}/) = {1a2’374}7D(Z) - {3}}’7
C={G=x<y G=y#z}})

Initialisation: Revise (X.c1), (Y.cl), (Y.c2), (Z.c2) Propagation: Revise (X.cl)

Y42Z z

10 + 4 constraint 4+ 1 constraint 9 constraint
checks checks checks

(a) (b)

18

Local Consistenc:
AC4 Arc Consistertlcy Ay|gorit|1ms
Binary normalized problems — value oriented (fine grained)
function AC4(in X: set): Boolean ;
begin
/* initialization */;

1 Q — 0; Slz;,v;] = 0,Vu; € D(x;),Vz; € X;
2 foreach z; € X, ¢;; € C,v; € D(z;) do
3 initialize counter|wi, vi,z;] to [{v; € D(xy) | (vi,vy) € cijtl;
4 if counter[x;,v;,z;] = 0 then remove v; from D(x;) and add (z;, vi) to
Q;
5 add (i, v:) to each Sfr;, v;] st. (vi,v;) € ey;
6 if D(z;) = () then return false ; 0 -
/* propagation */; O(ed?) time (optimal)
7 whileQ # (l do O(ed?) space
8 select and remove (x;,v;) from @ O(erd’) time for GAC
9 foreach (xi, vi) € S[z;,v;] do
10 if v; € D(z;) then
11 counter|z;, vi, £;] = counter[z;, vi, x;] — 1;
12 if counter(z;, v;, z;] = 0 then
13 remove v; from D(x;); add (x4, vi) to @Q;
14 if D(z;) = () then return false ;
15 return true ;

end

19

AC4

Example

P =(X=(x,y,2), D€ ={D(x) = D(y) = {1,2,3,4}, D(z) = {3}},

C={G=x<y,G=y+#z}})

counter(zr,1,y] =4
counter|r,2,y] = 3
counter|r,3,y] = 2
counter(z,4,y] =1

Sla, 1] = {(y. 1), (,2),
S[z.3] ={(y.3).(y,4)
Sz, 4] = {(y,4)}

counter[y,1,z] =1
counter(y,2,z] =2
counterly,3,z] =3
counter(y,4,z] =4

counter(y,1,z] =1
counter(y,2,z] =1
counter(y,3,z] =0
counter(y,4,z] =1
counter(z,3,y] = 3

Sy, 1] = {(2,1),(=,3)}
Sy, 2] = {(z.1).(z,2),(2,3)}
Sy, 3] = {(z.1), (z.2), (x.3)}
S[?j 4] = {(T 1) (T 2) (J‘ 3) (T 4) (27 3)}
S[z3] ={(y.1), (¥.2), (v.4)}

20

AC6 Local Consistency
Arc Consistency Algorithms
Binary normalized problems

S[x;j. vj] list of values (x;, v;) currently having (x;, v;) as their first support

function AC6(in X: set): Boolean ;
begin
/¥ initialization */;

1 Q — 0; S[zj,v;] = 0,Yv; € D(x;), Vr; € X;

2 foreach z; € X, ¢;; € C,v; € D(z;) do

3 v; « smallest value in D(xz;) s.t. (vi,v;) € eij;

4 if v; exists then add (zi,vi) to S[z;,v;;

5 else remove v; from D(z;) and add (z:,v:) to Q;

6 if D(x;) = () then return false ;

/* propagation */;

7 while () # () do O(edQ) R
8 select and remove (z;,v;) from Q;

9 foreach (zi,vi) € (S[ij,Jv)J] do O(ed) space
10 if v; € D(z;) then
11 v} « smallest value in D(x;) greater than v; s.t. (vi,v;) € ¢ij;
12 if v} exists then add (zq,vi) to Sz, vi];
13 else
14 remove v; from D(x;); add (xq,vi) to @;
15 if D(x;) = 0 then return false ;
16 return true ;

end

21

AC6

Example

P=(X=(x,y,2z), DE ={D(x) = (

S, 1]
Sz, 2
Sz, 3
Sz, 4]

i
{
i
{

y. 1), (1.2), (3.3), (3. 4)}

}
h
}

)=
{G

Consistenc

{17 2a 37 4}3 D(Z) - {3}}’
=x<y G=y#z}})
Sly. 1] ={(z, 1), (2,3)}
5[y 2]:{(7 2)}
Sy, 3] = {(x,3)}
Sly,4] = {(z.4)}
Sz, 3] = {(y. 1) (5. 2), (v.4)}

ithms

22

Reverse2001 o Gt gorithms

Binary case

function Revise2001(in x;: variable; ¢;;: constraint): Boolean ;
begin
1 CHANGE + false;
2 foreach v; € D(x;) s.t. Last(zi,vi,z;) € D(z;) do
3 vy +— smallest value in D(x;) greater than Last(x;, vi, x;) s.t.
(6,13 € i
4 if v; emists then Last(xi, vi, x;) «— vjy;
5 else
6 remove v; from D{w;);
T CHANGE « true;
8 return CHANGE ;
end
function AC3/GAC3(in X: set): Boolean ;
begin
/¥ initalisation */;
7 Q — {({ri,¢) |ee Ui € X(e)h
/* propagation */;
8 while @ # () do

0 select and remove (2, ¢) from Q;
10 if Revise(r:,c) then
11 if D(z;) =0 then return false ;
12 else Q@ — QU {(x;.¢) | eCnd £enm, o e X()NjLil
13 return true ;
end

23

Reverse2001

Example

Local Consistency
Arc Consistency Algorithms

P = <X=(X,y,2), DE = {D(X): D(Y) :{17273’4}’D(Z):{3}}7
C={G=x<y.Gz=y+z})

Last[z, 1,
Last[z, 2,
Last[z, 3,
Last[z, 4,

y =1
y| =2
y) =

y =4

Last|y,l,z] =1
Last|y,2,z] =1
Last[y,3,2] =1
Last[y,4,z] =1

Last[y, 1,
Lastly, 2,
Last[y, 3,
Last[y, 4,
Last|z, 3,

2zl =3
z] =

z] = nil
zl=3

24

. . . . ocal Consistency
Limitation of Arc Consistency Arc Comsisency Algorithms
Example
(x<y,y<z,z<x;x,y,z€ {1..100000})
is inconsistent.
Proof: Apply revise to (x,x < y)

(x<y,y<z,z<x;x€{1.99999},y,z € {1..100000}),

ecc. we end in a fail.)

» Disadvantage: large number of steps.
Run time depends on the size of the domains!

> Note: we could prove fail by transitivity of <.
~ Path consitency involves two constraints together

25

	Local Consistency
	Arc Consistency Algorithms

