
DM841

Discrete Optimization

Part I

Lecture 22
Search

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Complete Search
Incomplete Search
Random Restart
Implementation IssuesResume and Outlook

I Modeling in CP
I Global constraints (declaration)
I Notions of local consistency
I Global constraints (operational: filtering algorithms)
I Search
I Set variables
I Symmetry breaking

2

Complete Search
Incomplete Search
Random Restart
Implementation IssuesSearch

I Complete

I backtracking

I Incomplete

I local search

3

Complete Search
Incomplete Search
Random Restart
Implementation IssuesOutline

1. Complete Search

2. Incomplete Search

3. Random Restart

4. Implementation Issues

4

Complete Search
Incomplete Search
Random Restart
Implementation IssuesBacktracking: Terminology

I backtracking: depth first search of a search tree

I branching strategy: method to extend a node in the tree

I node visited if generated by the algorithm

I constraint propagation prunes subtrees

I deadend: if the node does not lead to a solution

I thrashing repeated exploration of failing subtree differing only in
assignments to variables irrelevant to the failure of the subtree.

5

Complete Search
Incomplete Search
Random Restart
Implementation IssuesSimple Backtracking

I at level j : instantiation I = {x1 = a1, . . . , xj = aj}

I branches: different choices for an unassigned variable: I ∪ {x = a}

I branching constraints C = {b1, . . . , bj}, bi , 1 ≤ i ≤ j

I C ∪ {b1
j+1}, . . . , C ∪ {bk

j+1} extension of a node by mutually exclusive
branching constraints

(In this view, easy implementation of propagation: the branching constraints
are simply scheduled for propagation)

6

Complete Search
Incomplete Search
Random Restart
Implementation IssuesBranching strategies

Assume a variable order and a value order (e.g., lexicographic):

A. Generic branching with unary constraints:

1. Enumeration, d -way

x = 1 | x = 2 | . . .

2. Binary choice points, 2-way

x = 1 | x 6= 1

3. Domain splitting
x ≤ 3 | x > 3

 d -way can be simulated by 2-way with no loss of efficiency. While d -way
with optimal ordering of variable and values can take exponentially more
time than a 2-way

 2-way seems more efficient than d -way on the same models
7

Complete Search
Incomplete Search
Random Restart
Implementation IssuesBranching strategies

B. Problem specific:

I Disjunctive scheduling (job-shop scheduling)
si , sj starting times of activities, di their duration
on a shared resource:

si + di ≤ sj | sj + dj ≤ si

equivalent to:

xij = 1 | xij 6= 1

with xij = 1 ⇐⇒ si + di ≤ sj and xij = 0 ⇐⇒ sj + dj ≤ si
introducing binary variables for order.

I Zykov’s branching rule for graph coloring

8

Complete Search
Incomplete Search
Random Restart
Implementation IssuesConstraint propagation

I Constraint propagation performed at each node: mechanism to avoid
thrashing

I typically best to enforce domain consistency but with some exceptions
(e.g., forward checking is best in SAT)

I nogood constraints added after deadend is encountered
similar to caching or memoization techniques: record solution to
subproblems and reuse them instead of recomputing them.
Corresponds to values ruled out by higher order consistency which would
be too costly to check

9

Complete Search
Incomplete Search
Random Restart
Implementation IssuesNogood constraints

Recollection

I An instantiation I on P is globally consistent if it can be extended to a
solution of P, globally inconsistent otherwise.

I A globally inconsistent instantiation is also called a (standard) nogood.
(a partial instantiation that does not lead to a solution.)

I Remark: A locally inconsistent instantiation is a nogood. The reverse is
not necessarily true

10

Complete Search
Incomplete Search
Random Restart
Implementation IssuesExample

11

Complete Search
Incomplete Search
Random Restart
Implementation IssuesExample

11

Complete Search
Incomplete Search
Random Restart
Implementation IssuesNogood constraints

Definition (Nogood)

A nogood constraint is a set of assignments and branching constraints that is
not consistent with any solution.

Implicit constraints, their addition does not remove solutions. Goal: reduce
thrashing.

I Rule out inconsistencies before they are encountered during search:

I Add implied constraints by hand during modeling
I Automatically add them by applying constraint propagation algorithms

 Rule out inconsistencies after they have been encountered
late for this node, since it has been already refuted, but it may
contribute to pruning in the future.

12

E.g.: On 6-queens problem:
Tree on the left:

No constraint propagation

white nodes: all constraints with some
instantiated variables are satisfied
black nodes: one or more constraint
checks fail

shaded area explained later

With arc consistency (left) and forward
checking (right):

– {x1 = 2, x2 = 5, x3 = 3} is a nogood: post ¬{x1 = 2 ∧ x2 = 5 ∧ x3 = 3}
– {x1 = 5, x2 = 2, x3 = 4} is also a nogood by mirroring over x-axis

– (x2 = 5) =⇒ (x6 6= 1)

Complete Search
Incomplete Search
Random Restart
Implementation IssuesDiscovering nogoods

Case without propagation:

I Let P = 〈X ,D, C ∪ {b1 . . . , bj}〉 be a deadended node (bi , 1 ≤ i ≤ j , is
the branching constraint posted at level i in the search tree).

I J(P) jumpback nogood for P is defined recursively:
I P is a leaf node. Let C be a constraint that is not consistent with P:

J(P) = {bi | X (bi) ∩ X (C) 6= ∅, 1 ≤ i ≤ j}

I P is not a leaf node. Let {b1
j+1 . . . , b

k
j+1} be all possible extensions of P

attempted by the branching strategy, each of which has failed:

J(P) =
k⋃

i=1

(J(P ∪ {bi
j+1})− {bi

j+1})

14

Example
Assume no constraint propagation

Eg: C′ = C ∪ {x1 = 2, x2 = 5, x3 = 3, x4 = 1, x5 = 4}, all extensions of x6 to
P fail:

J(P) = (J(P ∪ {x6 = 1})− {x6 = 1}) ∪ . . . ∪ (J(P ∪ {x6 = 6})− {x6 = 6})
= {x2 = 5} ∪ {x1 = 2} ∪ {x3 = 3} ∪ {x5 = 4} ∪ {x2 = 5} ∪ {x3 = 3}
= {x1 = 2, x2 = 5, x3 = 3, x5 = 4}

(for P ∪ {x6 = 1} both C (x2, x6) and C (x4, x6) fail but we take one)

Complete Search
Incomplete Search
Random Restart
Implementation IssuesDiscovering nogoods

Case with propagation:
I Let P = 〈X ,D, C ∪ {b1 . . . , bj}〉 be a deadended node (bi , 1 ≤ i ≤ j , is

the branching constraint posted at level i in the search tree).

I J(P) jumpback nogood for P is defined recursively:
I P is a leaf node. Let x be a variable whose domain has become empty

(one must exist), where dom(x) is the original domain of x :

J(P) =
⋃

a∈dom(x)

expl(x 6= a)

expl is eliminating explanation for a, ie, a subset of C such that
expl(x 6= a) ∪ {x = a} is a nogood

I P is not a leaf node. Let {b1
j+1 . . . , b

k
j+1} be all possible extensions of P

attempted by the branching strategy, each of which has failed:

J(P) =
k⋃

i=1

(J(P ∪ {bi
j+1})− {bi

j+1})

16

Discovering nogoods from Constr. Propagation

Example
Assume constraint propagation

At node P = {x1 = 2, x2 = 5} 1 is removed from D(x6).
Eliminating explanation: expl(x6 6= 1) = {x2 = 5} (≡ {x2 = 5, x6 = 1} is a
nogood)
Implied constraint ¬(x2 = 5 ∧ x6 = 1) (x2 = 5) =⇒ (x6 6= 1)

expl(x6 6= 3) = {x1 = 2, x2 = 5} (x1 = 2 ∧ x2 = 5) =⇒ (x6 6= 3)

Complete Search
Incomplete Search
Random Restart
Implementation IssuesNogood Databases

I Memory problems

I Attempt to restrict to only those that are useful:

I restrict the nogood that are discovered

I restrict the nogoods kept over time

18

Complete Search
Incomplete Search
Random Restart
Implementation IssuesBackjumping

I Standard backtracking: chronological backtracking: backjump to the
most recently instantiated variable

I Non-chronological backtracking ≡ backjumping or intelligent
backtracking:
backtracks to and retracts the closest branching constraint that bears
responsibility.

Eg: jump back to the most recent variable that shares a constraint with
deadend variable.

Eg: P = 〈X ,D, C ∪ {b1 . . . , bj}〉 non-leaf deadend
J(P) ⊆ {b1 . . . , bj} jumpback nogood for P
jump back to largest i , 1 ≤ i ≤ j : bi ∈ J(P) and retract bi , all
branching constraints posted after bi and nogoods recorded after bi

19

Complete Search
Incomplete Search
Random Restart
Implementation IssuesConflict-directed backjumping

Example

I deadend after failing to extend
25314. Nogood associated is
{x1 = 2, x2 = 5, x3 = 3, x5 = 4}

I Backjump to and retract x5 = 4
(here like chronological backtr.)

I deadend discovered for 2531.
Nogood associated is
{x1 = 2, x2 = 5, x3 = 3}

I backjump to and retract x3 = 3
(dashed arrow) skip all the
shaded tree

I (nogood used only to backjump
not for propagation, less memory
usage)

20

Complete Search
Incomplete Search
Random Restart
Implementation IssuesRestoration Service

What do we have at the nodes of the search tree?
A computational space:
1. Partial assignments of values to variables
2. Unassigned variables
3. Suspended propagators

How to restore when backtracking?

I Trailing Changes to nodes are recorded such that they can be undone
later

I Copying A copy of a node is created before the node is changed

I Recomputation If needed, a node is recomputed from root

21

Complete Search
Incomplete Search
Random Restart
Implementation Issues

I Having more than a single node available for exploration is essential to
search strategies like concurrent, parallel, or breadth-first.

I Combine recomputation with copying and trailing:

I copy (or start trailing) a node from time to time during exploration.

I recomputation then can start from the last copied (or trailed) node on
the path to the root.

I Adaptive recomputation: as soon as a failed node occurs during
exploration, the attitude for further exploration should become more
pessimistic during recomputation an additional copy is created at the
middle of the path for recomputation

22

Complete Search
Incomplete Search
Random Restart
Implementation IssuesExploration Heuristics

Decisions must be made on Variable-Value ordering:
optimal strategy if it visits the fewest number of nodes in the search tree.
Finding optimal ordering is hard

Possible goals
I Minimize the underlying search space

I Minimize expected depth of any branch

I Minimize expected number of branches

I Minimize size of search space explored by backtracking algorithm
(intractable to find “best” variable)

dynamic vs static strategy
In Gecode: Variable-Value Branching ch. 8 +
http://www.gecode.org/doc-latest/reference/group_
_TaskModelIntBranchVar.html

23

http://www.gecode.org/doc-latest/reference/group__TaskModelIntBranchVar.html
http://www.gecode.org/doc-latest/reference/group__TaskModelIntBranchVar.html

Complete Search
Incomplete Search
Random Restart
Implementation IssuesVariable ordering

dynamic heuristics:

I dom: choose x that minimizes rem(x |P) the domain size remaining after
propagation and branching constraints up to P.

I dom + deg (# constraints that involve a variable still unassigned)
I dom

wdeg weight incremented when a constraint is responsible for a deadend
I min regret

difference between smallest and second smallest value still in the domain
I structure guided var ordering:

instantiate first variables that decompose the constraint graph
graph separators: subset of vertices or edges that when removed
separates the graph into disjoint subcomponents

24

Complete Search
Incomplete Search
Random Restart
Implementation IssuesValue ordering

I estimate number of solutions:
counting solutions to a problem with tree structure can be done in
polytime
reduce the graph to a tree by dropping constraints

I if optimization constraints: reduced cost to rank values

25

Complete Search
Incomplete Search
Random Restart
Implementation IssuesBest First Search

I If problem unsatisfiable then DFS is the best way to go

I If problem satisfiable then BFS Best First Search is better

26

Complete Search
Incomplete Search
Random Restart
Implementation IssuesVariants to best search

I Limited Discrepancy search

Discrepancy: when the search does not follow the value ordering
heuristic and does not take the left most branch out of a node.

explored tree by iteratively increasing number of discrepancies, preferring
discrepancies near the root
(thus easier to recover from early mistakes)

Ex: ith iteration: visit all leaf nodes up to i discrepancies
i = 0, 1, . . . , k (if k ≥ n depth then alg is complete)

I Interleaved depth first search
each subtree rooted at a branch is searched for a given time-slice using
depth-first.
If no solution found, search suspended, next branch active.
Upon suspending in the last the first again becomes active.
Similar idea in credit based.

27

Complete Search
Incomplete Search
Random Restart
Implementation IssuesRandomization in Search Tree

I Dynamical selection of solution components
in construction or choice points in backtracking.

I Randomization of construction method or
selection of choice points in backtracking
while still maintaining the method complete
 randomized systematic search.

I do backtracking until distance from a deadend has exceeded a fixed
cutoff number, restart by reordering the variables

I Randomization can also be used in incomplete search

28

Complete Search
Incomplete Search
Random Restart
Implementation IssuesOptimization

I Solve a sequence of CSPs:
I iterating from smallest value in domain of cost to largest until a solution

is found
I iterating from largest to smallest until a solution is no longer found
I performing binary search

I use constraint propagation techniques for objective constraints

29

Complete Search
Incomplete Search
Random Restart
Implementation IssuesOutline

1. Complete Search

2. Incomplete Search

3. Random Restart

4. Implementation Issues

30

Complete Search
Incomplete Search
Random Restart
Implementation IssuesIncomplete Search

http:

//4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

31

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm
http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

Complete Search
Incomplete Search
Random Restart
Implementation IssuesIncomplete Search

Credit-based search
I Key idea: important decisions are

at the top of the tree
I Credit = backtracking steps
I Credit distribution: one half at

the best child the other divided
among the other children.

I When credits run out follow
deterministic best-search

I In addition: allow limited
backtracking steps (eg, 5) at the
bottom

I Control parameters: initial credit,
distribution of credit among the
children, amount of local
backtracking at bottom.

32

Complete Search
Incomplete Search
Random Restart
Implementation IssuesIncomplete Search

Limited Discrepancy Search (LDS)

I Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

I Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

I Eg: count one discrepancy if
second best is chosen
count two discrepancies either if
third best is chosen or twice the
second best is chosen

I Control parameter: the number of
discrepancies

33

Complete Search
Incomplete Search
Random Restart
Implementation IssuesIncomplete Search

Barrier Search

I Extension of LDS

I Key idea: we may encounter
several, independent problems in
our heuristic choice. Each of
these problems can be overcome
locally with a limited amount of
backtracking.

I At each barrier start LDS-based
backtracking

34

Complete Search
Incomplete Search
Random Restart
Implementation IssuesOutline

1. Complete Search

2. Incomplete Search

3. Random Restart

4. Implementation Issues

36

Complete Search
Incomplete Search
Random Restart
Implementation IssuesRandomization in Search Tree

I Ordering heuristics make mistakes (possibly early) randomization and
restarts

I Randomization of choice points in backtracking
while still maintaining the method complete
 randomized systematic search.

I do backtracking until distance from a deadend has exceeded a fixed
cutoff number, restart by reordering the variables

37

Complete Search
Incomplete Search
Random Restart
Implementation IssuesMotivations

Definition (Las Vegas algorithms)

Las Vegas algorithms are randomized algorithms that always give the correct
answer when they terminate, but running time varies from one run to another
and is modeled as a random variable

38

Complete Search
Incomplete Search
Random Restart
Implementation IssuesAlgorithm Survival Analysis

Run time distributions

I T ∈ [0,∞] time to find a solution on an instance

I F (t) = Pr{T ≤ t} F : [0,∞] 7→ [0, 1] cdf/RTD: Run Time Distribution

I f (t) = dF (t)
dt pdf

I S(t) = Pr{T > t} = 1− F (t) survival function

I E [T] =
∫∞
0 tf (t)dt =

∫ 1
0 tdF (t) =

∫∞
0 S(t)dt expected run time

39

Complete Search
Incomplete Search
Random Restart
Implementation IssuesEmpirical Comparisons� �

> load("Data/r37.RData")
> head(R37)

time iter event case
1 101 185737 0 1
2 57 84850 1 1
3 1 568 1 1
4 51 94974 1 1
5 5 7017 1 1

> require(survival)
> t <- survfit(Surv(time, event) ~ case, data = R37, type = "kaplan-meier",
conf.type = "plain", conf.int = 0.95, se.fit = T)
> plot(t, conf.int = F, xlab = "Time to find a solution", col = c("grey50", "black"),

lty = c(1, 1), ylab = "ecdf", fun = "event", ylim = c(0,1))� �

0 20 40 60 80 100

0.
0

0.
4

0.
8

Time to find a solution

ec
df

40

Complete Search
Incomplete Search
Random Restart
Implementation IssuesCharacterization of Run-time

Heavy Tails

Gomes et al. [2000] analyze the mean computational cost to find a solution
on a single instance

On the left, the observed behavior calculated over an increasing number of
runs.
On the right, the case of data drawn from normal or gamma distributions

I The use of the median instead of the mean is recommended
I The existence of the moments (e.g., mean, variance) is determined by

the tails behavior: a case like the left one arises in presence of long tails

41

Complete Search
Incomplete Search
Random Restart
Implementation IssuesHeavy Tails

Standard pdf, eg the normal distribution, have exponentially decreasing tails,
ie, events that are several standard deviations from the mean of the
distribution are very rare.

Power law decay:

F (t) −→
t→∞

1− Ct−
1
γ (Pareto like distr.)

where γ > 0 and C > 0 are constants.

I Depending on C , γ, the mean of a heavy-tail distribution can be finite or
not, while higher moments are infinite.

42

Complete Search
Incomplete Search
Random Restart
Implementation Issues

Why can RTDs have heavy tails?
Because heuristics make mistakes which require the backtracking algorithm
to explore a large subtree with no solutions.

I Value mistake: a node in the search tree that is a nogood but the parent
of the node is not a nogood.

I Backdoor mistake: a selection of a variable that is not in a minimal
backdoor, when such a variable is available to be chosen.
Backdoors are set of variables that if instantiated make the subproblem
much easier to solve (polynomially)

43

Complete Search
Incomplete Search
Random Restart
Implementation IssuesCharacterization of runtime

Parametric models used in the analysis of run-times to
exploit the properties of the model (eg, the character of tails and completion
rate)

Procedure:

I choose a model
I apply fitting method

maximum likelihood estimation method:

max
θ∈Θ

log
n∏

i=1

p(Xi , θ)

I test the model

44

Complete Search
Incomplete Search
Random Restart
Implementation IssuesParametric models

The distributions used are [Frost et al., 1997; Gomes et al., 2000]:

0 1 2 3 4

0.0

0.5

1.0

1.5

Exponential

x

f(
x)

0 1 2 3 4

0.0

0.5

1.0

1.5

Weibull

x

f(
x)

0 1 2 3 4

0.0

0.5

1.0

1.5

Log−normal

x

f(
x)

0 1 2 3 4

0.0

0.5

1.0

1.5

Gamma

x

f(
x)

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Exponential

x

h(
x)

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Weibull

x

h(
x)

0 1 2 3 4 5

0

1

2

3

4

5

6

x

h(
x)

Log−normal

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gamma

x

h(
x)

45

Complete Search
Incomplete Search
Random Restart
Implementation IssuesCharacterization of Run-time

Motivations for these distributions:

I qualitative information on the completion rate (= hazard function)
I empirical good fitting

To check whether a parametric family of models is reasonable the idea is to
make plots that should be linear. Departures from linearity of the data can be
easily appreciated by eye.

Example: for an exponential distribution:

log S(t) = −λt S(t) = 1− F (t) is the survivor function

 the plot of log S(t) against t should be linear.

Similarly, for the Weibull the cumulative hazard function is linear on a log-log
plot

 heavy tail if S(t) in log-log plot is linear with slope −1/γ
46

Complete Search
Incomplete Search
Random Restart
Implementation IssuesCharacterization of Run-time

Heavy Tails

Graphical check using a log-log plot:

I heavy tail distributions approximate linear decay,
I exponentially decreasing tail has faster-than linear decay

Long tails explain the goodness of random restart. Determining the cutoff
time is however not trivial.

47

Complete Search
Incomplete Search
Random Restart
Implementation IssuesExtreme Value Statistics

I Extreme value statistics focuses on characteristics related to the tails of
a distribution function

1. extreme quantiles (e.g., minima)
2. indices describing tail decay

I ‘Classical’ statistical theory: analysis of means.
Central limit theorem: X1, . . . ,Xn i.i.d. with FX

√
n

X̄ − µ√
Var(X)

D−→ N(0, 1), as n→∞

Heavy tailed distributions: mean and/or variance may not be finite!

49

Complete Search
Incomplete Search
Random Restart
Implementation IssuesExtreme Value Statistics

Extreme values theory
I X1,X2, . . . ,Xn i.i.d. FX

Ascending order statistics X (1)
n ≤ . . . ≤ X (n)

n

I For the minimum X (1)
n it is FX (1)

n
= 1− [1− F (1)

X]n but not very useful in
practice as FX unknown

I Theorem of [Fisher and Tippett, 1928]:
“almost always” the normalized extreme tends in distribution to a
generalized extreme distribution (GEV) as n→∞.

In practice, the distribution of extremes is approximated by a GEV:

FX (1)
n

(x) ∼

{
exp(−1(1− γ x−µ

σ)−1/γ , 1− γ x−µ
σ > 0, γ 6= 0

exp(− exp(x−µ
σ)), x ∈ R, γ = 0

Parameters estimated by simulation by repeatedly sampling k values
X1n, . . . ,Xkn, taking the extremes X (1)

kn , and fitting the distribution.
γ determines the type of distribution: Weibull, Fréchet, Gumbel, ...

50

Complete Search
Incomplete Search
Random Restart
Implementation IssuesExtreme Value Statistics

Tail theory
I Work with data exceeding a high threshold.
I Conditional distribution of exceedances over threshold τ

1− Fτ (y) = P(X − τ > y | X > τ) =
P(X > τ + y)

P(X > τ)

I If the distribution of extremes tends to GEV distribution then there
exists a Pareto-type function such that for some γ > 0

1− FX (x) = x−
1
γ `F (x), x > 0,

with `F (x) a slowly varying function at infinity.

In practice, fit a function Cx−
1
γ to the exceedances:

Yj = Xi − τ , provided Xi > τ , j = 1, . . . ,Nτ .
γ determines the nature of the tail

51

Complete Search
Incomplete Search
Random Restart
Implementation IssuesCharacterization of Run-time

Heavy Tails

The values estimated for γ give indication on the tails:
I γ > 1: long tails hyperbolic decay (the completion rate decreases with t)

and mean not finite
I γ < 1: tails exhibit exponential decay

Graphical check using a log-log plot:
I heavy tail distributions approximate linear decay,
I exponentially decreasing tail has faster-than linear decay

Long tails explain the goodness of random restart. Determining the cutoff
time is however not trivial.

52

Complete Search
Incomplete Search
Random Restart
Implementation IssuesRandomization

I Randomize the variable ordering

I randomize tie breaking

I ranking variables within a small factor of the best variable and choosing
one at random

I choose a variable with probability proportional to heuristic weight of the
variable

I pick one at random from a set of heuristics to use for the selection

I randomize value ordering

I random backwards jump in search space upon backtracking (makes it
incomplete)

Wanted: enough different decisions near the top of the search tree
53

Complete Search
Incomplete Search
Random Restart
Implementation IssuesRestart strategies

I Restart strategy: execute a sequence of runs of a randomized algorithm,
to solve a single problem instance, stopping the r -th run after a time
τ(r) if no solution is found, and restarting the algorithm with a different
random seed

I defined by a function τ : N→ R+ producing the sequence of thresholds
τ(r) employed.

I origins in the field of communication networks
(Fayolle et al., 1978) derive the optimal timeout for a simple “send and
wait” communication protocol, maximizing the transmission rate.

I It can be proved that restart is beneficial under two conditions: if the
survival function decreases less fast than an exponential, and if the RTD
is improper.

54

Complete Search
Incomplete Search
Random Restart
Implementation Issues

Luby et al. [1993] study Las Vegas algorithms and prove that:

I if F (t) is known:
the optimal restart strategy is uniform, i.e., τ(r) = τ , ie,
~τ = (τ, τ, τ, τ, . . .).
Optimal cutoff time ~τ∗ can be evaluated minimizing the expected value
of the total run-time Tτ :

E{T~τ} =
τ −

∫ τ
0 F (t)dt
F (τ)

(of course F (t) is not known in practice)

55

Complete Search
Incomplete Search
Random Restart
Implementation Issues

I if F (t) is not known, Luby et al. [1993] suggested a universal,
non-uniform restart strategy, whose cutoff sequence is composed of
powers of 2:

~τuniv = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . .)

τuniv (r) :=

{
2j−1 if r = 2j − 1;

τ(r − 2j−1 + 1) if 2j−1 ≤ r < 2j − 1

(everytime a pair of runs of a given length is completed a run of twice
that length is executed ≡ when 2j−1 is used twice, 2j is the next)

 For all distributions F (t) the performance of ~τuniv is bounded with high
probability with respect to EF{T~τ∗}:

EF{T~τuniv } ≤ 192EF{T~τ∗}(log EF{T~τ∗}+ 5)

and the tail decays exponentially. (Note that the result is asymptotic)
 It is the best performance it can be achieved by any universal strategy

up to a constant factor
56

Complete Search
Incomplete Search
Random Restart
Implementation IssuesDeciding the Restart Strategy in Practice

What counts for primitive operation?
I number of deadends
I distance from a deadend (keep nogoods discovered)
I number of backtracks
I number of nodes visited

For fixed cutoff, which cutoff value?
I instance dependent: hence trial and error
I safer to make larger than too small
I in practice the universal strategy seems slow as it increases too slowly,

hence often scaled version: ~τuniv = (s, s, 2s, . . .)
I Toby Walsh proposes a geometric progression ~τg = (1, s, s2, . . .) for

1 < s < 2. Performs well in practice but no guarantees.
I Kautz et al. propose a Bayesian model to predict when run will go long

and restart it
I optimization within a given deadline also possible

57

Complete Search
Incomplete Search
Random Restart
Implementation IssuesOutline

1. Complete Search

2. Incomplete Search

3. Random Restart

4. Implementation Issues

58

Complete Search
Incomplete Search
Random Restart
Implementation IssuesSearch – Resume

I Backtracking
I Branching strategies (Variable-Value heuristics)
I Nogood constraints
I Backjumping
I Restoration service

Gecode uses a hybrid of copying and batch recomputation, called
adaptive recomputation, which remembers a copy in the middle of the
path from the root (sec. 40.6)
more copying when a deadend encountered
c_d=8 recomputation commit distance (at most 8 recomputation
commits)
a_d=2 recomputation adaptation distance (only if path length n > ad a
copy is created)

62

Complete Search
Incomplete Search
Random Restart
Implementation IssuesIn Gecode

I Branching (ch.8) defines the shape of the search tree.

I Exploration (ch.9) defines a strategy how to explore parts of the search
tree

63

Complete Search
Incomplete Search
Random Restart
Implementation IssuesIn Gecode

Branching (ch.8) defines the shape of the search tree.

I predefined variable-value branching for branch() function
I INT_VAR_..., INT_VAL_..., SET_VAR_...,SET_VAL_...

FLOAT_VAR_..., FLOAT_VAL_...
Rnd r(1U); uniform random numbers

I local selections: depend only on current node
shared selections: use information that is collected during search, hence
on all nodes created since branching posted:
eg, Accumulated Failure Count (aka, weighted degree, wdeg, sec. 8.5.2)
Activity-based: how many values have been removed from variable’s
domain

I Lightweight Dynamic Symmetry Breaking, see later

64

Complete Search
Incomplete Search
Random Restart
Implementation Issues

I In optimization branch(home, c, INT_VAL_MIN());
will try values for c in increasing order
(not good in parallel search)

I Filters:� �
static bool filter(const Space& home, IntVar y, int i) {
return y.size() >= 4;

}
branch(home, x, ... , ... , &filter);� �

65

Complete Search
Incomplete Search
Random Restart
Implementation IssuesIn Gecode

Exploration (ch.9) defines a strategy how to explore parts of the search tree

I Hybrid recomputation

I Parallel search (-threads 8): work-stealing architecture

I initially, all work is given to a single worker for exploration, making the
worker busy.

I All other workers are initially idle, and try to steal work from a busy
worker: ie, part of the search tree is given from a busy worker to an idle
worker

I non-deterministic
I memory needed scales linearly with the number of workers used.

I Search engines DFS, BAB; next(), statistics(), stopped()

66

I Search::Stop(Search::Statistics, Search::Options); next()
passed to a search engine

I Restart from a modified problem:

I AFC or activity heuristics are updated
I diffrerent random seed
I use different branching heuristic
I include no-goods
I Large Neighborhood Search: keep a randomly selected part of a previous

solution.

I RBS<DFS,Script> e(s,o);

I Cutoff generators: Search::Cutoff;
operator()(), operator++(), the first returns the current cutoff
value and the second increments to the next cutoff value and returns it.
Cutoff values are of type unsigned long int� �
Search::Cutoff* c = Search::Cutoff::luby(s); //s , scale factor ; MPG p.152−153
Search::Options o;
o.cutoff = c;
RBS<DFS,Script> e(space,o);� �

Complete Search
Incomplete Search
Random Restart
Implementation Issues

I no-goods by deafult not activated in RBS.

I nogoods_limit describes to which depth limit no-goods should be
extracted from the path of the search tree maintained by the search
engine.� �
Search::Options o;
o.nogoods_limit = 128;
RBS<DFS,Script> e(s,o);� �

I larger values for this limit imply higher memory consumption

68

Complete Search
Incomplete Search
Random Restart
Implementation IssuesSearch Options

from command line

69

Complete Search
Incomplete Search
Random Restart
Implementation IssuesVan Hentenryck’s Videos

I COMET code

I Choose var that leaves more values for other variables

I Value oriented decision (eg, perfect squares)

I Weaker commitment, domain splitting, >,<
(eg, magic squares, car sequencing)
tends to be a better choice since fixing values less benefit from
propagation from other variables (Tip. 8.2)

I Symmetry breaking vs heuristics

72

Complete Search
Incomplete Search
Random Restart
Implementation IssuesReferences

Frost D., Rish I., and Vila L. (1997). Summarizing CSP hardness with continuous
probability distributions. In Proceedings of AAAI/IAAI, pp. 327–333.

Gomes C. and Selman B. (2005). Can get satisfaction. Nature, 435, pp. 751–752.
Gomes C., Selman B., Crato N., and Kautz H. (2000). Heavy-tailed phenomena in

satisfiability and constraint satisfaction problems. Journal of Automated
Reasoning, 24(1-2), pp. 67–100.

Luby M., Sinclair A., and Zuckerman D. (1993). Optimal speedup of las vegas
algorithms. Information Processing Letters, 47(4), pp. 173–180.

Minton S., Johnston M., Philips A., and Laird P. (1992). Minimizing conflicts: A
heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence, 58(1-3), pp. 161–205.

Rossi F., van Beek P., and Walsh T. (eds.) (2006). Handbook of Constraint
Programming. Elsevier.

Schulte C. and Carlsson M. (2006). Finite domain constraint programming
systems. In Rossi et al. [2006].

73

	Complete Search
	Incomplete Search
	Random Restart
	Implementation Issues

