
DM841

Heuristics for Combinatorial Optimization

Metaheuristics to Enhance Construction Heuristics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Construction Heuristics
Metaheuristics
DescriptionsCourse Overview

4 Combinatorial Optimization, Methods and Models

4 CH and LS: overview

4 Working Environment and Solver Systems

4 Methods for the Analysis of Experimental Results
I Construction Heuristics
I Local Search: Components, Basic Algorithms
I Local Search: Neighborhoods and Search Landscape
I Efficient Local Search: Incremental Updates and Neighborhood Pruning
I Stochastic Local Search & Metaheuristics
I Configuration Tools: F-race
I Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
p-median, set covering

2



Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods

Dealing with Objectives
Dealing with Constraints

Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

3



Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

4



Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods

Dealing with Objectives
Dealing with Constraints

Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

5



Construction Heuristics
Metaheuristics
DescriptionsComplete Search Methods

Tree search:
Uninformed Search

I Breadth-first search
I Uniform-cost search
I Depth-first search
I Depth-limited search
I Iterative deepening search
I Bidirectional Search

Informed Search
I best-first search, aka, greedy

search
I A∗ search
I Iterative Deepening A∗

I Memory bounded A∗

I Recursive best first

6



Construction Heuristics
Metaheuristics
Descriptions

Best-first search

7



Construction Heuristics
Metaheuristics
Descriptions

A∗ search

A∗ search
I The priority assigned to a node x is determined by the function

f(x) = g(x) + h(x)

g(x): cost of the path so far
h(x): heuristic estimate of the minimal cost to reach the goal from x.

I It is optimal if h(x) is an
I admissible heuristic: never overestimates the cost to reach the goal
I consistent: h(n) ≤ c(n, a, n′) + h(n′)

8



Construction Heuristics
Metaheuristics
Descriptions

A∗ search

9



Construction Heuristics
Metaheuristics
Descriptions

A∗ search

Possible choices for admissible heuristic functions

I optimal solution to an easily solvable relaxed problem
I optimal solution to an easily solvable subproblem
I learning from experience by gathering statistics on state features
I preferred heuristics functions with higher values (provided they do not

overestimate)
I if several heuristics available h1, h2, . . . , hm and not clear which is the

best then:

h(x) = max{h1(x), . . . , hm(x)}

10



Construction Heuristics
Metaheuristics
Descriptions

A∗ search
Drawbacks

I Time complexity: In the worst case, the number of nodes expanded is
exponential,
(but it is polynomial when the heuristic function h meets the following
condition:

|h(x)− h∗(x)| ≤ O(log h∗(x))

h∗ is the optimal heuristic, the exact cost of getting from x to the goal.)

I Memory usage: In the worst case, it must remember an exponential
number of nodes.
Several variants: including iterative deepening A∗ (IDA∗),
memory-bounded A∗ (MA∗) and simplified memory bounded A∗ (SMA∗)
and recursive best-first search (RBFS)

11



Construction Heuristics
Metaheuristics
DescriptionsConstraint Satisfaction and Backtracking

1) Which variable should we assign next,
and in what order should its values be tried?

I Select-Initial-Unassigned-Variable

I Select-Unassigned-Variable
I most constrained first = fail-first heuristic

= Minimum remaining values (MRV) heuristic
(tend to reduce the branching factor and to speed up pruning)

I least constrained last

Eg.: max degree, farthest, earliest due date, etc.

I Order-Domain-Values
I greedy
I least constraining value heuristic

(leaves maximum flexibility for subsequent variable assignments)
I maximal regret

implements a kind of look ahead
12



Construction Heuristics
Metaheuristics
Descriptions

2) What are the implications of the current variable assignments for the
other unassigned variables?

Propagating information through constraints:

I Implicit in Select-Unassigned-Variable

I Forward checking (coupled with Minimum Remaining Values)

I Constraint propagation in CSP
I arc consistency: force all (directed) arcs uv to be consistent:
∃ a value in D(v) : ∀ values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each
assignment (Maintaining Arc Consistency)

Applied repeatedly

[Can you find preprocessing rules for the graph coloring problem?]

16



Construction Heuristics
Metaheuristics
Descriptions

3) When a path fails – that is, a state is reached in which a variable has no
legal values can the search avoid repeating this failure in subsequent
paths?

Backtracking-Search
I chronological backtracking, the most recent decision point is revisited
I backjumping, backtracks to the most recent variable in the conflict set

(set of previously assigned variables connected to X by constraints).

18



Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

20



Construction Heuristics
Metaheuristics
DescriptionsIncomplete Search

Complete search is often better suited when ...
I proofs of insolubility or optimality are required;
I time constraints are not critical;
I problem-specific knowledge can be exploited.

Incomplete search is the necessary choice when ...
I non linear constraints and non linear objective function;
I reasonably good solutions are required within a short time;
I problem-specific knowledge is rather limited.

22



Construction Heuristics
Metaheuristics
DescriptionsGreedy algorithms

Greedy algorithms (derived from best-first)
I Strategy: always make the choice that is best at the moment
I Single descent in the search tree
I They are not generally guaranteed to find globally optimal solutions

(but sometimes they do: Minimum Spanning Tree, Single Source
Shortest Path, etc.)

We will see problem sepcific examples

24



Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

25



Construction Heuristics
Metaheuristics
DescriptionsMetaheuristics

26



Construction Heuristics
Metaheuristics
DescriptionsMetaheuristics

On backtracking framework
(beyond best-first search)

I Random Restart
I Bounded backtrack
I Credit-based search
I Limited Discrepancy Search
I Barrier Search
I Randomization in Tree Search

Outside the exact framework
(beyond greedy search)

I Random Restart
I Rollout/Pilot Method
I Beam Search
I Iterated Greedy
I GRASP
I (Adaptive Iterated Construction

Search)
I (Multilevel Refinement)

27



Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

28



Construction Heuristics
Metaheuristics
DescriptionsBounded backtrack

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

29

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm


Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

31



Construction Heuristics
Metaheuristics
DescriptionsLimited Discrepancy Search

Limited Discrepancy Search (LDS)

I Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

I Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

I Eg: count one discrepancy if
second best is chosen
count two discrepancies either if
third best is chosen or twice the
second best is chosen

I Control parameter: the number of
discrepancies

32



Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

34



Construction Heuristics
Metaheuristics
DescriptionsRandomization in Tree Search

The idea comes from complete search: the important decisions are made up
in the search tree (backdoors - set of variables such that once they are
instantiated the remaining problem simplifies to a tractable form)
 random selections + restart strategy

Random selections
I randomization in variable ordering:

I breaking ties at random
I use heuristic to rank and randomly pick from small factor from the best
I random pick among heuristics
I random pick variable with probability depending on heuristic value

I randomization in value ordering:
I just select random from the domain

Restart strategy in backtracking

I Example: Su = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 4, 8, 1, . . .)

35



Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

36



Construction Heuristics
Metaheuristics
DescriptionsRollout/Pilot Method

Derived from A∗

I Each candidate solution is a collection of m components
S = (s1, s2, . . . , sm).

I Master process adds components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

I At the k-th iteration the master process evaluates feasible components
to add based on an heuristic look-ahead strategy.

I The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk

I Sub-heuristics are combined in H(Sk+1) by
I weighted sum
I minimal value

37



Construction Heuristics
Metaheuristics
Descriptions

Speed-ups:

I halt whenever cost of current partial solution exceeds current upper
bound

I evaluate only a fraction of possible components

38



Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

39



Construction Heuristics
Metaheuristics
DescriptionsBeam Search

Again based on tree search:
I maintain a set B of bw (beam width) partial candidate solutions

I at each iteration extend each solution from B in fw (filter width)
possible ways

I rank each bw × fw candidate solutions and take the best bw partial
solutions

I complete candidate solutions obtained by B are maintained in Bf

I Stop when no partial solution in B is to be extended

40



Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

41



Construction Heuristics
Metaheuristics
DescriptionsIterated Greedy

(aka, Adaptive Large Neighborhood Search, see later)

Key idea: use greedy construction

I alternation of construction and deconstruction phases
I an acceptance criterion decides whether the search continues from the

new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
(randomly or heuristically) destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r

42



Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

43



Construction Heuristics
Metaheuristics
DescriptionsGRASP

Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local
search.

Motivation:

I Candidate solutions obtained from construction heuristics can often be
substantially improved by local search.

I Local search methods often require substantially fewer steps to reach
high-quality solutions when initialized using greedy constructive search
rather than random picking.

I By iterating cycles of constructive + local search, further performance
improvements can be achieved.

44



Construction Heuristics
Metaheuristics
Descriptions

Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

I Randomization in constructive search ensures that a large number of
good starting points for subsidiary local search is obtained.

I Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.

I Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.

45



Construction Heuristics
Metaheuristics
Descriptions

Restricted candidate lists (RCLs)

I Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

I RCLs are constructed in each step using a heuristic function h.

I RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

I RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)

I Possible extension: reactive GRASP (e.g., dynamic adaptation of α
during search)

46



Construction Heuristics
Metaheuristics
DescriptionsExample: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to
exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create
troubles.

Squeaky Wheel
I Constructor: greedy algorithm on a sequence of problem elements.
I Analyzer: assign a penalty to problem elements that contribute to flaws

in the current solution.
I Prioritizer: uses the penalties to modify the previous sequence of problem

elements. Elements with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other

47



Construction Heuristics
Metaheuristics
DescriptionsOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3. Descriptions

48



Construction Heuristics
Metaheuristics
DescriptionsGuidelines for Text Writing

From common bad practice in this course

I Outline:
1. word (discursive) description

2. precise algorithm using mathematical notation and pseudo-code

3. implementation details, ie, abstract data structures

4. computational (runtime, space) analysis
I Refer to floating environments like Algorithms and Figures that you

present in the text
I Cite your sources in a proper and detailed way, they must be retrievable

by the reader. If you do not do it then you are committing plagiarism.
I Before submitting: run spell checker and then read again and again and

again
I Mathematical notation makes things clearer and precise and the overall

descriptions more concise. (but use latex!)
I As a reader you should ask yourself whether you would be able to

reproduce the algorithm in exactly the same way as described.
49



Construction Heuristics
Metaheuristics
Descriptions

I Algorithmic sketches in pseudo-code must be code independent

I Complexity analysis is relevant: it helps to understand the algorithm and
gives idea about how things can be implemented efficiently

I Aim at beauty, eg, general approaches rather than problem dependent.

I Reason on the problem, do not do things mechanically, every problem is
a different story.

I Originality counts

I Language, choose the one you prefer

I Avoid self-pietism: Do not write “I did not have time to...”

I Focus on efficency, aim at the Pareto frontier.

I See also Comment List and examples of past final projects from course
web page

50


	Construction Heuristics
	Complete Search Methods
	Incomplete Search Methods

	Metaheuristics
	Bounded backtrack
	Limited Discrepancy Search
	Random Restart
	Rollout/Pilot Method
	Beam Search
	Iterated Greedy
	GRASP

	Descriptions

