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Construction Heuristics
Metaheuristics
DescriptionsCourse Overview

4 Combinatorial Optimization, Methods and Models

4 CH and LS: overview

4 Working Environment and Solver Systems

4 Methods for the Analysis of Experimental Results
I Construction Heuristics
I Local Search: Components, Basic Algorithms
I Local Search: Neighborhoods and Search Landscape
I Efficient Local Search: Incremental Updates and Neighborhood Pruning
I Stochastic Local Search & Metaheuristics
I Configuration Tools: F-race
I Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
p-median, set covering
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DescriptionsOutline

1. Construction Heuristics
Complete Search Methods

Dealing with Objectives
Dealing with Constraints

Incomplete Search Methods

2. Metaheuristics
Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
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Iterated Greedy
GRASP

3. Descriptions
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Construction Heuristics
Metaheuristics
DescriptionsComplete Search Methods

Tree search:
Uninformed Search

I Breadth-first search
I Uniform-cost search
I Depth-first search
I Depth-limited search
I Iterative deepening search
I Bidirectional Search

Informed Search
I best-first search, aka, greedy

search
I A∗ search
I Iterative Deepening A∗

I Memory bounded A∗

I Recursive best first
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Metaheuristics
Descriptions

Best-first search
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Construction Heuristics
Metaheuristics
Descriptions

A∗ search

A∗ search
I The priority assigned to a node x is determined by the function

f(x) = g(x) + h(x)

g(x): cost of the path so far
h(x): heuristic estimate of the minimal cost to reach the goal from x.

I It is optimal if h(x) is an
I admissible heuristic: never overestimates the cost to reach the goal
I consistent: h(n) ≤ c(n, a, n′) + h(n′)
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A∗ search
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Construction Heuristics
Metaheuristics
Descriptions

A∗ search

Possible choices for admissible heuristic functions

I optimal solution to an easily solvable relaxed problem
I optimal solution to an easily solvable subproblem
I learning from experience by gathering statistics on state features
I preferred heuristics functions with higher values (provided they do not

overestimate)
I if several heuristics available h1, h2, . . . , hm and not clear which is the

best then:

h(x) = max{h1(x), . . . , hm(x)}
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Construction Heuristics
Metaheuristics
Descriptions

A∗ search
Drawbacks

I Time complexity: In the worst case, the number of nodes expanded is
exponential,
(but it is polynomial when the heuristic function h meets the following
condition:

|h(x)− h∗(x)| ≤ O(log h∗(x))

h∗ is the optimal heuristic, the exact cost of getting from x to the goal.)

I Memory usage: In the worst case, it must remember an exponential
number of nodes.
Several variants: including iterative deepening A∗ (IDA∗),
memory-bounded A∗ (MA∗) and simplified memory bounded A∗ (SMA∗)
and recursive best-first search (RBFS)

11



Construction Heuristics
Metaheuristics
DescriptionsConstraint Satisfaction and Backtracking

1) Which variable should we assign next,
and in what order should its values be tried?

I Select-Initial-Unassigned-Variable

I Select-Unassigned-Variable
I most constrained first = fail-first heuristic

= Minimum remaining values (MRV) heuristic
(tend to reduce the branching factor and to speed up pruning)

I least constrained last

Eg.: max degree, farthest, earliest due date, etc.

I Order-Domain-Values
I greedy
I least constraining value heuristic

(leaves maximum flexibility for subsequent variable assignments)
I maximal regret

implements a kind of look ahead
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Construction Heuristics
Metaheuristics
Descriptions

2) What are the implications of the current variable assignments for the
other unassigned variables?

Propagating information through constraints:

I Implicit in Select-Unassigned-Variable

I Forward checking (coupled with Minimum Remaining Values)

I Constraint propagation in CSP
I arc consistency: force all (directed) arcs uv to be consistent:
∃ a value in D(v) : ∀ values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each
assignment (Maintaining Arc Consistency)

Applied repeatedly

[Can you find preprocessing rules for the graph coloring problem?]
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Construction Heuristics
Metaheuristics
Descriptions

3) When a path fails – that is, a state is reached in which a variable has no
legal values can the search avoid repeating this failure in subsequent
paths?

Backtracking-Search
I chronological backtracking, the most recent decision point is revisited
I backjumping, backtracks to the most recent variable in the conflict set

(set of previously assigned variables connected to X by constraints).
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Construction Heuristics
Metaheuristics
DescriptionsIncomplete Search

Complete search is often better suited when ...
I proofs of insolubility or optimality are required;
I time constraints are not critical;
I problem-specific knowledge can be exploited.

Incomplete search is the necessary choice when ...
I non linear constraints and non linear objective function;
I reasonably good solutions are required within a short time;
I problem-specific knowledge is rather limited.
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Construction Heuristics
Metaheuristics
DescriptionsGreedy algorithms

Greedy algorithms (derived from best-first)
I Strategy: always make the choice that is best at the moment
I Single descent in the search tree
I They are not generally guaranteed to find globally optimal solutions

(but sometimes they do: Minimum Spanning Tree, Single Source
Shortest Path, etc.)

We will see problem sepcific examples
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Metaheuristics
DescriptionsMetaheuristics

On backtracking framework
(beyond best-first search)

I Random Restart
I Bounded backtrack
I Credit-based search
I Limited Discrepancy Search
I Barrier Search
I Randomization in Tree Search

Outside the exact framework
(beyond greedy search)

I Random Restart
I Rollout/Pilot Method
I Beam Search
I Iterated Greedy
I GRASP
I (Adaptive Iterated Construction

Search)
I (Multilevel Refinement)
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Metaheuristics
DescriptionsBounded backtrack

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm
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Metaheuristics
DescriptionsLimited Discrepancy Search

Limited Discrepancy Search (LDS)

I Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

I Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

I Eg: count one discrepancy if
second best is chosen
count two discrepancies either if
third best is chosen or twice the
second best is chosen

I Control parameter: the number of
discrepancies
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Construction Heuristics
Metaheuristics
DescriptionsRandomization in Tree Search

The idea comes from complete search: the important decisions are made up
in the search tree (backdoors - set of variables such that once they are
instantiated the remaining problem simplifies to a tractable form)
 random selections + restart strategy

Random selections
I randomization in variable ordering:

I breaking ties at random
I use heuristic to rank and randomly pick from small factor from the best
I random pick among heuristics
I random pick variable with probability depending on heuristic value

I randomization in value ordering:
I just select random from the domain

Restart strategy in backtracking

I Example: Su = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 4, 8, 1, . . .)
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Construction Heuristics
Metaheuristics
DescriptionsRollout/Pilot Method

Derived from A∗

I Each candidate solution is a collection of m components
S = (s1, s2, . . . , sm).

I Master process adds components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

I At the k-th iteration the master process evaluates feasible components
to add based on an heuristic look-ahead strategy.

I The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk

I Sub-heuristics are combined in H(Sk+1) by
I weighted sum
I minimal value
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Metaheuristics
Descriptions

Speed-ups:

I halt whenever cost of current partial solution exceeds current upper
bound

I evaluate only a fraction of possible components
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Construction Heuristics
Metaheuristics
DescriptionsBeam Search

Again based on tree search:
I maintain a set B of bw (beam width) partial candidate solutions

I at each iteration extend each solution from B in fw (filter width)
possible ways

I rank each bw × fw candidate solutions and take the best bw partial
solutions

I complete candidate solutions obtained by B are maintained in Bf

I Stop when no partial solution in B is to be extended
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Metaheuristics
DescriptionsIterated Greedy

(aka, Adaptive Large Neighborhood Search, see later)

Key idea: use greedy construction

I alternation of construction and deconstruction phases
I an acceptance criterion decides whether the search continues from the

new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
(randomly or heuristically) destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r
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Metaheuristics
DescriptionsGRASP

Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local
search.

Motivation:

I Candidate solutions obtained from construction heuristics can often be
substantially improved by local search.

I Local search methods often require substantially fewer steps to reach
high-quality solutions when initialized using greedy constructive search
rather than random picking.

I By iterating cycles of constructive + local search, further performance
improvements can be achieved.
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Metaheuristics
Descriptions

Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

I Randomization in constructive search ensures that a large number of
good starting points for subsidiary local search is obtained.

I Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.

I Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.
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Metaheuristics
Descriptions

Restricted candidate lists (RCLs)

I Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

I RCLs are constructed in each step using a heuristic function h.

I RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

I RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)

I Possible extension: reactive GRASP (e.g., dynamic adaptation of α
during search)
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Metaheuristics
DescriptionsExample: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to
exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create
troubles.

Squeaky Wheel
I Constructor: greedy algorithm on a sequence of problem elements.
I Analyzer: assign a penalty to problem elements that contribute to flaws

in the current solution.
I Prioritizer: uses the penalties to modify the previous sequence of problem

elements. Elements with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other
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Construction Heuristics
Metaheuristics
DescriptionsGuidelines for Text Writing

From common bad practice in this course

I Outline:
1. word (discursive) description

2. precise algorithm using mathematical notation and pseudo-code

3. implementation details, ie, abstract data structures

4. computational (runtime, space) analysis
I Refer to floating environments like Algorithms and Figures that you

present in the text
I Cite your sources in a proper and detailed way, they must be retrievable

by the reader. If you do not do it then you are committing plagiarism.
I Before submitting: run spell checker and then read again and again and

again
I Mathematical notation makes things clearer and precise and the overall

descriptions more concise. (but use latex!)
I As a reader you should ask yourself whether you would be able to

reproduce the algorithm in exactly the same way as described.
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I Algorithmic sketches in pseudo-code must be code independent

I Complexity analysis is relevant: it helps to understand the algorithm and
gives idea about how things can be implemented efficiently

I Aim at beauty, eg, general approaches rather than problem dependent.

I Reason on the problem, do not do things mechanically, every problem is
a different story.

I Originality counts

I Language, choose the one you prefer

I Avoid self-pietism: Do not write “I did not have time to...”

I Focus on efficency, aim at the Pareto frontier.

I See also Comment List and examples of past final projects from course
web page
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