
DM841

Discrete Optimization

Part 2 – Lecture 1
Local Search

Overview

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsOutline

1. Combinatorial Optimization

2. Vertex Coloring

3. Heuristic Methods
Local Search

2

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsOutline

1. Combinatorial Optimization

2. Vertex Coloring

3. Heuristic Methods
Local Search

3

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsGeneral vs Instance

General problem vs problem instance:

General problem Π:
I Given any set of points X in a square, find a shortest Hamiltonian cycle
I Solution: Algorithm that finds shortest Hamiltonian cycle for any X

Problem instantiation π = Π(I):
I Given a specific set of points I in the square, find a shortest Hamiltonian

cycle
I Solution: Shortest Hamiltonian cycle for I

Problems can be formalized on sets of problem instances I (instance classes)

4

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsTraveling Salesman Problem

Types of TSP instances:
I Symmetric: For all edges uv of the given graph G , vu is also in G , and

w(uv) = w(vu).
Otherwise: asymmetric.

I Euclidean: Vertices = points in an Euclidean space,
weight function = Euclidean distance metric.

I Geographic: Vertices = points on a sphere,
weight function = geographic (great circle) distance.

5

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsTSP: Benchmark Instances

Instance classes
I Real-life applications (geographic, VLSI)
I Random Euclidean
I Random Clustered Euclidean
I Random Distance

Available at the TSPLIB (more than 100 instances upto 85.900 cities)
and at the 8th DIMACS challenge

6

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsTSP: Instance Examples

7

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsOutline

1. Combinatorial Optimization

2. Vertex Coloring

3. Heuristic Methods
Local Search

8

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsThe Vertex Coloring Problem

Given: A graph G and a set of colors Γ.
A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)
Task: Find a proper coloring of G that uses at most
k colors.
Optimization version (chromatic number)
Task: Find a proper coloring of G that uses the
minimal number of colors.

Design an algorithm for solving general instances of the graph coloring
problem.

9

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsExercise

Map coloring:

10

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsConstraint Programming

I Model
I Parameters
I Variables and Domains
I Constraints
I Objective Function

I Search (solve a decision problem)
I Branching

I Variable selection
I Value selection

I Search strategy
I BFS
I DFS
I LDS

11

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsCP-model

CP formulation:

variables : domain(yi) = {1, . . . ,K} ∀i ∈ V

constraints : yi 6= yj ∀ij ∈ E(G)

alldifferent({yi | i ∈ C}) ∀C ∈ C

12

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsPropagation: An Example

13

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsLocal Search

I Model
I Variables solution representation, search space
I Constraints:

I implicit
I one-way defining invariants
I soft

I evaluation function

I Search (solve an optimization problem)
I Construction heuristics
I (Stochastic) local search, metaheuristics

I Neighborhoods
I Iterative Improvement
I Tabu Search
I Simulated Annealing
I Guided Local Search

I Population based metaheuristics

14

Combinatorial Optimization
Vertex Coloring
Heuristic Methods

variables : domain(yi) = {1, . . . ,K} ∀i ∈ V
constraints : yi 6= yj ∀ij ∈ E (G)

� �
range Vertices = 1..nv;
range Colors = 1..nv;
int nbc = Colors.getUp();

LS m;
Var<int> y[Vertices](m, Colors) := 1;

ConstraintSystem S(m);
forall (i in Vertices, j in Vertices: j>i && adj[i,j])

S.post(y[i] != y[j]);� �
15

Combinatorial Optimization
Vertex Coloring
Heuristic Methods

� �
// CONSTRUCTION HEURISTIC
set{int} dom[v in Vertices] = setof(c in Colors) true;
RandomPermutation perm(Vertices);
forall (i in 1..nv) {

int v = perm.get();
selectMin(c in dom[v])(c) {

y[v] := c;
forall(w in Vertices: adj[v,w])

dom[w].delete(c);
}

}
nbc = max(v in Vertices) y[v];
Colors = 1..nbc;
cout<<"Construction heuristic, done: "<<nbc<<" colors"<< endl;� �

16

� �
Solution bestsol = new Solution(m);
int itLimit = 1000∗Vertices.getUp();
int maxidle = 10∗Vertices.getUp();
int it = 0;
int idle = 0;

int best = S.violations();
while (S.violations() > 0 && idle < maxidle && it < itLimit) {

selectMin(v in Vertices, c in Colors, d = S.getAssignDelta(col[v],c)) (d)
{

// cout<<it<<" v:"<<v<<" c:"<<c<<" "<<S.getAssignDelta(col[v],c)<<endl;
col[v] := c;

}
if (violations < best)
{

// cout<<"+";
best = violations;
idle=0;

}
else
{

// cout<<"−";
idle++;

}
it++;

}
// cout<<it<<" "<<idle<<endl;
cout<<"final: "<<max(v in Vertices) col[v]<<endl;� �

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsGuidelines for an analysis

I Given that a feasible coloring exists, is there always a non-null probablity
to find it from any initial solution?

I Will the procedure repeat the same moves and/or solutions? Will it end
or will it loop?

I Are we doing unecessary work?

I Are we returning a local optimum?

18

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsOutline

1. Combinatorial Optimization

2. Vertex Coloring

3. Heuristic Methods
Local Search

20

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsHeuristics

Get inspired by approach to problem solving in human mind
[A. Newell and H.A. Simon. “Computer science as empirical inquiry: symbols and
search.” Communications of the ACM, ACM, 1976, 19(3)]

I effective rules
I trial and error

Applications:
I Optimization
I But also in Psychology, Economics, Management [Tversky, A.; Kahneman,

D. (1974). "Judgment under uncertainty: Heuristics and biases". Science 185]

Basis on empirical evidence rather than mathematical logic. Getting things
done in the given time.

21

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsOutline

1. Combinatorial Optimization

2. Vertex Coloring

3. Heuristic Methods
Local Search

22

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsLocal Search

Main idea for combinatorial optimization

I Sequential modification of a small number of decisions

I Incremental evaluation of solutions, generally in O(1) time
(Differentiable Objects in Van Hentenryck and Michel’s book)

I Lazy propagation of constraints

I Usage of invariants

 Small improvement probability but small time and space complexity
 Millions of moves per minute

I (Meta)heuristic rules to drive the search

23

Combinatorial Optimization
Vertex Coloring
Heuristic MethodsLocal Search Modeling

Can be done within the same framework of Constraint Programming.
See Constraint Based Local-Search (Van Hentenryck and Michel).

I Decide the variables.
An assignment of these variables should identify a candidate solution
or a candidate solution must be retrievable efficiently
Must be linked to some Abstract Data Type (arrays, sets, permutations).

I Express the implicit constraints on these variables

I Relax some constraints that are difficult to satisfy to become soft
constraints

I Express the evaluation function to handle soft constraints and objective
function

No restrictions are posed on the language in which the above elements are
expressed.

24

	Combinatorial Optimization
	Vertex Coloring
	Heuristic Methods
	Local Search

