DM841 Discrete Optimization

Part 2 – Lecture 1 Local Search Overview

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Combinatorial Optimization Vertex Coloring Heuristic Methods

1. Combinatorial Optimization

2. Vertex Coloring

Combinatorial Optimization Vertex Coloring Heuristic Methods

1. Combinatorial Optimization

2. Vertex Coloring

General vs Instance

General problem vs problem instance:

General problem **Π**:

- ▶ Given *any* set of points *X* in a square, find a shortest Hamiltonian cycle
- ► Solution: Algorithm that finds shortest Hamiltonian cycle for any X

Problem instantiation $\pi = \Pi(I)$:

- Given a specific set of points / in the square, find a shortest Hamiltonian cycle
- Solution: Shortest Hamiltonian cycle for I

Problems can be formalized on sets of problem instances \mathcal{I} (instance classes)

Types of TSP instances:

- Symmetric: For all edges uv of the given graph G, vu is also in G, and w(uv) = w(vu).
 Otherwise: asymmetric.
- Euclidean: Vertices = points in an Euclidean space, weight function = Euclidean distance metric.
- Geographic: Vertices = points on a sphere, weight function = geographic (great circle) distance.

Instance classes

- Real-life applications (geographic, VLSI)
- Random Euclidean
- Random Clustered Euclidean
- Random Distance

Available at the TSPLIB (more than 100 instances upto 85.900 cities) and at the 8th DIMACS challenge

Combinatorial Optimization Vertex Coloring Heuristic Methods

TSP: Instance Examples

Combinatorial Optimization Vertex Coloring Heuristic Methods

1. Combinatorial Optimization

2. Vertex Coloring

The Vertex Coloring Problem

Given: A graph G and a set of colors Γ .

A proper coloring is an assignment of one color to each vertex of the graph such that adjacent vertices receive different colors.

Decision version (*k*-coloring)

Task: Find a proper coloring of G that uses at most k colors.

Optimization version (chromatic number)

Task: Find a proper coloring of G that uses the minimal number of colors.

Design an algorithm for solving general instances of the graph coloring problem.

Exercise

Combinatorial Optimization Vertex Coloring Heuristic Methods

Map coloring:

Constraint Programming

Model

- Parameters
- Variables and Domains
- Constraints
- Objective Function
- Search (solve a decision problem)
 - Branching
 - Variable selection
 - Value selection
 - Search strategy
 - BFS
 - DFS
 - LDS

CP-model

CP formulation:

variables :	$\texttt{domain}(\texttt{y}_\texttt{i}) = \{1, \dots, K\}$	$\forall i \in V$
constraints :	$y_i \neq y_j$	$\forall ij \in E(G)$
	$\texttt{alldifferent}(\{\texttt{y}_\texttt{i} \mid \texttt{i} \in \texttt{C}\})$	$\forall C \in C$

Propagation: An Example

Figure 5.6 The progress of a map-coloring search with forward checking. WA = red is assigned first; then forward checking deletes red from the domains of the neighboring variables NT and SA. After Q = green, green is deleted from the domains of NT, SA, and NSW. After V = blue, blue is deleted from the domains of NSW and SA, leaving SA with no legal values.

Local Search

Model

- ► Variables ~→ solution representation, search space
- Constraints:
 - implicit
 - one-way defining invariants
 - soft
- evaluation function
- Search (solve an optimization problem)
 - Construction heuristics
 - (Stochastic) local search, metaheuristics
 - Neighborhoods
 - Iterative Improvement
 - Tabu Search
 - Simulated Annealing
 - Guided Local Search
 - Population based metaheuristics

$\begin{array}{ll} \textit{variables}: & \textit{domain}(\mathtt{y}_{\mathtt{i}}) = \{1, \dots, K\} & \forall i \in V \\ \textit{constraints}: & y_i \neq y_j & \forall ij \in E(G) \end{array}$

```
range Vertices = 1..nv;
range Colors = 1..nv;
int nbc = Colors.getUp();
LS m;
Var<int> y[Vertices](m, Colors) := 1;
ConstraintSystem S(m);
forall (i in Vertices, j in Vertices: j>i && adj[i,j])
S.post(y[i] != y[j]);
```

```
// CONSTRUCTION HEURISTIC
set{int} dom[v in Vertices] = setof(c in Colors) true;
RandomPermutation perm(Vertices);
forall (i in 1..nv) {
    int v = perm.get();
    selectMin(c in dom[v])(c) {
        y[v] := c;
        forall(w in Vertices: adj[v,w])
            dom[w].delete(c);
    }
    }
    nbc = max(v in Vertices) y[v];
    Colors = 1..nbc;
    cout<<"Construction heuristic, done: "<<nbc<<" colors"<< endl;</td>
```

```
Solution bestsol = new Solution(m);
int itLimit = 1000 * Vertices.getUp();
int maxidle = 10 * Vertices.getUp();
int it = 0:
int idle = 0;
int best = S.violations();
while (S.violations() > 0 \&\& idle < maxidle \&\& it < itLimit) {
    selectMin(v in Vertices, c in Colors, d = S.getAssignDelta(col[v],c)) (d)
         // cout<<it<<" v:"<<v<<" c:"<<c<<" "<<S.getAssignDelta(col[v],c)<<endl;
         col[v] := c:
    if (violations < best)
         // cout<<"+";
         best = violations:
         idle=0:
    else
         // cout<<"-";
         idle++:
    it++:
}
// cout<<it<<" "<<idle<<endl;</pre>
cout<<"final: "<<max(v in Vertices) col[v]<<endl;</pre>
```

- Given that a feasible coloring exists, is there always a non-null probablity to find it from any initial solution?
- Will the procedure repeat the same moves and/or solutions? Will it end or will it loop?
- Are we doing unecessary work?
- Are we returning a local optimum?

Combinatorial Optimization Vertex Coloring Heuristic Methods

1. Combinatorial Optimization

2. Vertex Coloring

3. Heuristic Methods

Local Search

Heuristics

Get inspired by approach to problem solving in human mind

[A. Newell and H.A. Simon. "Computer science as empirical inquiry: symbols and search." Communications of the ACM, ACM, 1976, 19(3)]

- effective rules
- trial and error

Applications:

- Optimization
- But also in Psychology, Economics, Management [Tversky, A.; Kahneman, D. (1974). "Judgment under uncertainty: Heuristics and biases". Science 185]

Basis on empirical evidence rather than mathematical logic. Getting things done in the given time.

Combinatorial Optimization Vertex Coloring Heuristic Methods

1. Combinatorial Optimization

2. Vertex Coloring

Local Search

Main idea for combinatorial optimization

- Sequential modification of a small number of decisions
- Incremental evaluation of solutions, generally in O(1) time (Differentiable Objects in Van Hentenryck and Michel's book)
 - Lazy propagation of constraints
 - Usage of invariants
 - \rightsquigarrow Small improvement probability but small time and space complexity \rightsquigarrow Millions of moves per minute
- (Meta)heuristic rules to drive the search

Local Search Modeling

Can be done within the same framework of Constraint Programming. See Constraint Based Local-Search (Van Hentenryck and Michel).

Decide the variables.

An assignment of these variables should identify a candidate solution or a candidate solution must be retrievable efficiently Must be linked to some Abstract Data Type (arrays, sets, permutations).

- Express the implicit constraints on these variables
- Relax some constraints that are difficult to satisfy to become soft constraints
- Express the evaluation function to handle soft constraints and objective function

No restrictions are posed on the language in which the above elements are expressed.