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General problem vs problem instance:

General problem Π:
I Given any set of points X in a square, find a shortest Hamiltonian cycle
I Solution: Algorithm that finds shortest Hamiltonian cycle for any X

Problem instantiation π = Π(I ):
I Given a specific set of points I in the square, find a shortest Hamiltonian

cycle
I Solution: Shortest Hamiltonian cycle for I

Problems can be formalized on sets of problem instances I (instance classes)
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Types of TSP instances:
I Symmetric: For all edges uv of the given graph G , vu is also in G , and

w(uv) = w(vu).
Otherwise: asymmetric.

I Euclidean: Vertices = points in an Euclidean space,
weight function = Euclidean distance metric.

I Geographic: Vertices = points on a sphere,
weight function = geographic (great circle) distance.
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Instance classes
I Real-life applications (geographic, VLSI)
I Random Euclidean
I Random Clustered Euclidean
I Random Distance

Available at the TSPLIB (more than 100 instances upto 85.900 cities)
and at the 8th DIMACS challenge
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Given: A graph G and a set of colors Γ.
A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)
Task: Find a proper coloring of G that uses at most
k colors.
Optimization version (chromatic number)
Task: Find a proper coloring of G that uses the
minimal number of colors.

Design an algorithm for solving general instances of the graph coloring
problem.
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Map coloring:
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I Model
I Parameters
I Variables and Domains
I Constraints
I Objective Function

I Search (solve a decision problem)
I Branching

I Variable selection
I Value selection

I Search strategy
I BFS
I DFS
I LDS
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CP formulation:

variables : domain(yi) = {1, . . . ,K} ∀i ∈ V

constraints : yi 6= yj ∀ij ∈ E(G)

alldifferent({yi | i ∈ C}) ∀C ∈ C
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I Model
I Variables  solution representation, search space
I Constraints:

I implicit
I one-way defining invariants
I soft

I evaluation function

I Search (solve an optimization problem)
I Construction heuristics
I (Stochastic) local search, metaheuristics

I Neighborhoods
I Iterative Improvement
I Tabu Search
I Simulated Annealing
I Guided Local Search

I Population based metaheuristics
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variables : domain(yi) = {1, . . . ,K} ∀i ∈ V
constraints : yi 6= yj ∀ij ∈ E (G )

� �
range Vertices = 1..nv;
range Colors = 1..nv;
int nbc = Colors.getUp();

LS m;
Var<int> y[Vertices](m, Colors) := 1;

ConstraintSystem S(m);
forall (i in Vertices, j in Vertices: j>i && adj[i,j])

S.post(y[i] != y[j]);� �
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� �
// CONSTRUCTION HEURISTIC
set{int} dom[v in Vertices] = setof(c in Colors) true;
RandomPermutation perm(Vertices);
forall (i in 1..nv) {

int v = perm.get();
selectMin(c in dom[v])(c) {

y[v] := c;
forall(w in Vertices: adj[v,w])

dom[w].delete(c);
}

}
nbc = max(v in Vertices) y[v];
Colors = 1..nbc;
cout<<"Construction heuristic, done: "<<nbc<<" colors"<< endl;� �
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� �
Solution bestsol = new Solution(m);
int itLimit = 1000∗Vertices.getUp();
int maxidle = 10∗Vertices.getUp();
int it = 0;
int idle = 0;

int best = S.violations();
while (S.violations() > 0 && idle < maxidle && it < itLimit) {

selectMin(v in Vertices, c in Colors, d = S.getAssignDelta(col[v],c)) (d)
{

// cout<<it<<" v:"<<v<<" c:"<<c<<" "<<S.getAssignDelta(col[v],c)<<endl;
col[v] := c;

}
if ( violations < best)
{

// cout<<"+";
best = violations;
idle=0;

}
else
{

// cout<<"−";
idle++;

}
it++;

}
// cout<<it<<" "<<idle<<endl;
cout<<"final: "<<max(v in Vertices) col[v]<<endl;� �
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I Given that a feasible coloring exists, is there always a non-null probablity
to find it from any initial solution?

I Will the procedure repeat the same moves and/or solutions? Will it end
or will it loop?

I Are we doing unecessary work?

I Are we returning a local optimum?
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Get inspired by approach to problem solving in human mind
[A. Newell and H.A. Simon. “Computer science as empirical inquiry: symbols and
search.” Communications of the ACM, ACM, 1976, 19(3)]

I effective rules
I trial and error

Applications:
I Optimization
I But also in Psychology, Economics, Management [Tversky, A.; Kahneman,

D. (1974). "Judgment under uncertainty: Heuristics and biases". Science 185]

Basis on empirical evidence rather than mathematical logic. Getting things
done in the given time.
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Main idea for combinatorial optimization

I Sequential modification of a small number of decisions

I Incremental evaluation of solutions, generally in O(1) time
(Differentiable Objects in Van Hentenryck and Michel’s book)

I Lazy propagation of constraints

I Usage of invariants

 Small improvement probability but small time and space complexity
 Millions of moves per minute

I (Meta)heuristic rules to drive the search
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Can be done within the same framework of Constraint Programming.
See Constraint Based Local-Search (Van Hentenryck and Michel).

I Decide the variables.
An assignment of these variables should identify a candidate solution
or a candidate solution must be retrievable efficiently
Must be linked to some Abstract Data Type (arrays, sets, permutations).

I Express the implicit constraints on these variables

I Relax some constraints that are difficult to satisfy to become soft
constraints

I Express the evaluation function to handle soft constraints and objective
function

No restrictions are posed on the language in which the above elements are
expressed.
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