
DM841

Discrete Optimization

Part 2 – Lecture 3
Local Search

Overview

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Local Search Algorithms
Basic AlgorithmsOutline

1. Local Search Algorithms

2. Basic Algorithms

2



Local Search Algorithms
Basic AlgorithmsOutline

1. Local Search Algorithms

2. Basic Algorithms

3



Local Search Algorithms
Basic AlgorithmsLocal Search Algorithms

Given a (combinatorial) optimization problem Π and one of its instances π:

1. search space S(π)

I specified by the definition of (finite domain, integer) variables and
their values handling implicit constraints

I all together they determine the representation of candidate solutions
I common solution representations are discrete structures such as:

sequences, permutations, partitions, graphs
(e.g., for SAT: array, sequence of truth assignments
to propositional variables)

Note: solution set S ′(π) ⊆ S(π)
(e.g., for SAT: models of given formula)

4



Local Search Algorithms
Basic AlgorithmsLocal Search Algorithms (cntd)

2. evaluation function fπ : S(π)→ R

I it handles the soft constraints and the objective function
(e.g., for SAT: number of false clauses)

3. neighborhood function, Nπ : S → 2S(π)

I defines for each solution s ∈ S(π) a set of solutions N(s) ⊆ S(π)
that are in some sense close to s.
(e.g., for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)

5



Local Search Algorithms
Basic AlgorithmsLocal Search Algorithms (cntd)

Further components [according to [HS]]

4. set of memory states M(π)
(may consist of a single state, for LS algorithms that
do not use memory)

5. initialization function init : ∅ → S(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over initial
search positions and memory states)

6. step function step : S(π)×M(π)→ S(π)×M(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over
subsequent, neighboring search positions and memory states)

7. termination predicate terminate : S(π)×M(π)→ {>,⊥}
(determines the termination state for each
search position and memory state)

6



Local Search Algorithms
Basic AlgorithmsLocal search — global view

c

s

Neighborhood graph
I vertices: candidate solutions

(search positions)

I vertex labels: evaluation function

I edges: connect “neighboring”
positions

I s: (optimal) solution

I c: current search position

8



Local Search Algorithms
Basic AlgorithmsIterative Improvement

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s ′ of s such that f (s ′) < f (s)
s := s ′

I If more than one neighbor have better cost then need to choose one
(heuristic pivot rule)

I The procedure ends in a local optimum ŝ:
Def.: Local optimum ŝ w.r.t. N if f (ŝ) ≤ f (s) ∀s ∈ N(ŝ)

I Issue: how to avoid getting trapped in bad local optima?
I use more complex neighborhood functions
I restart
I allow non-improving moves

9



Local Search Algorithms
Basic AlgorithmsExample: Local Search for SAT

Example: Uninformed random walk for SAT (1)

I solution representation and search space S :
array of boolean variables representing the truth assignments to variables
in given formula F
no implicit constraint
(solution set S ′: set of all models of F )

I neighborhood relation N : 1-flip neighborhood, i.e., assignments are
neighbors under N iff they differ in
the truth value of exactly one variable

I evaluation function handles clause and proposition constraints
f (s) = 0 if model f (s) = 1 otherwise

I memory: not used, i.e., M := ∅

10



Local Search Algorithms
Basic Algorithms

Example: Uninformed random walk for SAT (2)

I initialization: uniform random choice from S , i.e.,
init(, {a′,m}) := 1/|S | for all assignments a′ and
memory states m

I step function: uniform random choice from current neighborhood, i.e.,
step({a,m}, {a′,m}) := 1/|N(a)|
for all assignments a and memory states m,
where N(a) := {a′ ∈ S | N (a, a′)} is the set of
all neighbors of a.

I termination: when model is found, i.e.,
terminate({a,m}) := > if a is a model of F , and 0 otherwise.

11



Local Search Algorithms
Basic AlgorithmsN-Queens Problem

N-Queens problem

Input: A chessboard of size N × N

Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.

12



Local Search Algorithms
Basic AlgorithmsLocal Search Examples

Random Walk

queensLS0a.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size, v in Size) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations() <<

endl;
}
it = it + 1;

}
cout << queen << endl;� �

13



Local Search Algorithms
Basic AlgorithmsLocal Search Examples

Another Random Walk

queensLS1.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size : S.violations(queen[q])>0, v in Size) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations()<<

endl;
}
it = it + 1;

}
cout << queen << endl;� �

14



Local Search Algorithms
Basic AlgorithmsMetaheuristics

I Variable Neighborhood Search and Large Scale Neighborhood Search
diversified neighborhoods + incremental algorithmics ("diversified" ≡
multiple, variable-size, and rich).

I Tabu Search: Online learning of moves
Discard undoing moves,
Discard inefficient moves
Improve efficient moves selection

I Simulated annealing
Allow degrading solutions

I “Restart” + parallel search
Avoid local optima
Improve search space coverage

15



Local Search Algorithms
Basic AlgorithmsSummary: Local Search Algorithms

For given problem instance π:

1. search space Sπ, solution representation: variables + implicit constraints

2. evaluation function fπ : S → R, soft constraints + objective

3. neighborhood relation Nπ ⊆ Sπ × Sπ

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}

16



Local Search Algorithms
Basic AlgorithmsDecision vs Minimization

LS-Decision(π)
input: problem instance π ∈ Π
output: solution s ∈ S ′(π) or ∅
(s,m) := init(π)

while not terminate(π, s, m) do
(s,m) := step(π, s, m)

if s ∈ S ′(π) then
return s

else
return ∅

LS-Minimization(π′)
input: problem instance π′ ∈ Π′

output: solution s ∈ S ′(π′) or ∅
(s,m) := init(π′);
sb := s;
while not terminate(π′, s, m) do

(s,m) := step(π′, s, m);
if f (π′, s) < f (π′, ŝ) then

sb := s;

if sb ∈ S ′(π′) then
return sb

else
return ∅

However, the algorithm on the left has little guidance, hence most often
decision problems are transformed in optimization problems by, eg, couting
number of violations.

17



Local Search Algorithms
Basic AlgorithmsOutline

1. Local Search Algorithms

2. Basic Algorithms

18



Local Search Algorithms
Basic AlgorithmsIterative Improvement

I does not use memory
I init: uniform random choice from S or construction heuristic
I step: uniform random choice from improving neighbors

Pr(s, s ′) =

{
1/|I (s)| if s ′ ∈ I (s)

0 otherwise

where I (s) := {s ′ ∈ S | N (s, s ′) and f (s ′) < f (s)}

I terminates when no improving neighbor available

Note: Iterative improvement is also known as iterative descent or
hill-climbing.

19



Local Search Algorithms
Basic AlgorithmsIterative Improvement (cntd)

Pivoting rule decides which neighbors go in I (s)

I Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbors,
i.e., I (s) := {s ′ ∈ N(s) | f (s ′) = g∗},
where g∗ := min{f (s ′) | s ′ ∈ N(s)}.

Note: Requires evaluation of all neighbors in each step!

I First Improvement: Evaluate neighbors in fixed order,
choose first improving one encountered.

Note: Can be more efficient than Best Improvement but not in the worst
case; order of evaluation can impact performance.

20



Local Search Algorithms
Basic AlgorithmsExamples

Iterative Improvement for SAT

I search space S : set of all truth assignments to variables in given formula F
(solution set S ′: set of all models of F )

I neighborhood relation N : 1-flip neighborhood
I memory: not used, i.e., M := {0}
I initialization: uniform random choice from S , i.e., init(∅, {a}) := 1/|S | for all

assignments a
I evaluation function: f (a) := number of clauses in F

that are unsatisfied under assignment a
(Note: f (a) = 0 iff a is a model of F .)

I step function: uniform random choice from improving neighbors, i.e.,
step(a, a′) := 1/|I (a)| if a′ ∈ I (a),
and 0 otherwise, where I (a) := {a′ | N (a, a′) ∧ f (a′) < f (a)}

I termination: when no improving neighbor is available
i.e., terminate(a) := > if I (a) = ∅, and 0 otherwise.

21



Local Search Algorithms
Basic AlgorithmsExamples

Random order first improvement for SAT
URW-for-SAT(F ,maxSteps)
input: propositional formula F , integer maxSteps
output: a model for F or ∅
choose assignment ϕ of truth values to all variables in F

uniformly at random;
steps := 0;
while ¬(ϕ satisfies F ) and (steps < maxSteps) do

select x uniformly at random from {x ′|x ′ is a variable in F and
changing value of x ′ in ϕ decreases the number of unsatisfied clauses}
steps := steps+1;

if ϕ satisfies F then
return ϕ

else
return ∅

22



Local Search Algorithms
Basic AlgorithmsLocal Search Algorithms

Iterative Improvement

queensLS00.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size, v in Size : S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations() <<

endl;
}
it = it + 1;

}
cout << queen << endl;� �

23



Local Search Algorithms
Basic AlgorithmsLocal Search Algorithms

Best Improvement

queensLS0.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

selectMin(q in Size,v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations()

<<endl;
}
it = it + 1;

}
cout << queen << endl;� �

24



Local Search Algorithms
Basic AlgorithmsLocal Search Algorithms

First Improvement

queensLS2.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

selectFirst(q in Size, v in Size: S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations()

<<endl;
}
it = it + 1;

}
cout << queen << endl;� �

25



Local Search Algorithms
Basic AlgorithmsLocal Search Algorithms

Min Conflict Heuristic

queensLS0b.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size : S.violations(queen[q])>0) {
selectMin(v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations()

<<endl;
}
it = it + 1;

}
}
cout << queen << endl;� �

26


	Local Search Algorithms
	Basic Algorithms

