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Given a (combinatorial) optimization problem Π and one of its instances π:

1. search space S(π)

I specified by the definition of (finite domain, integer) variables and
their values handling implicit constraints

I all together they determine the representation of candidate solutions
I common solution representations are discrete structures such as:

sequences, permutations, partitions, graphs
(e.g., for SAT: array, sequence of truth assignments
to propositional variables)

Note: solution set S ′(π) ⊆ S(π)
(e.g., for SAT: models of given formula)
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2. evaluation function fπ : S(π)→ R

I it handles the soft constraints and the objective function
(e.g., for SAT: number of false clauses)

3. neighborhood function, Nπ : S → 2S(π)

I defines for each solution s ∈ S(π) a set of solutions N(s) ⊆ S(π)
that are in some sense close to s.
(e.g., for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)
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Further components [according to [HS]]

4. set of memory states M(π)
(may consist of a single state, for LS algorithms that
do not use memory)

5. initialization function init : ∅ → S(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over initial
search positions and memory states)

6. step function step : S(π)×M(π)→ S(π)×M(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over
subsequent, neighboring search positions and memory states)

7. termination predicate terminate : S(π)×M(π)→ {>,⊥}
(determines the termination state for each
search position and memory state)
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c

s

Neighborhood graph
I vertices: candidate solutions

(search positions)

I vertex labels: evaluation function

I edges: connect “neighboring”
positions

I s: (optimal) solution

I c: current search position
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Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s ′ of s such that f (s ′) < f (s)
s := s ′

I If more than one neighbor have better cost then need to choose one
(heuristic pivot rule)

I The procedure ends in a local optimum ŝ:
Def.: Local optimum ŝ w.r.t. N if f (ŝ) ≤ f (s) ∀s ∈ N(ŝ)

I Issue: how to avoid getting trapped in bad local optima?
I use more complex neighborhood functions
I restart
I allow non-improving moves
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Example: Uninformed random walk for SAT (1)

I solution representation and search space S :
array of boolean variables representing the truth assignments to variables
in given formula F
no implicit constraint
(solution set S ′: set of all models of F )

I neighborhood relation N : 1-flip neighborhood, i.e., assignments are
neighbors under N iff they differ in
the truth value of exactly one variable

I evaluation function handles clause and proposition constraints
f (s) = 0 if model f (s) = 1 otherwise

I memory: not used, i.e., M := ∅
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Example: Uninformed random walk for SAT (2)

I initialization: uniform random choice from S , i.e.,
init(, {a′,m}) := 1/|S | for all assignments a′ and
memory states m

I step function: uniform random choice from current neighborhood, i.e.,
step({a,m}, {a′,m}) := 1/|N(a)|
for all assignments a and memory states m,
where N(a) := {a′ ∈ S | N (a, a′)} is the set of
all neighbors of a.

I termination: when model is found, i.e.,
terminate({a,m}) := > if a is a model of F , and 0 otherwise.
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N-Queens problem

Input: A chessboard of size N × N

Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.
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Random Walk

queensLS0a.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size, v in Size) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations() <<

endl;
}
it = it + 1;

}
cout << queen << endl;� �
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Another Random Walk

queensLS1.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size : S.violations(queen[q])>0, v in Size) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations()<<

endl;
}
it = it + 1;

}
cout << queen << endl;� �
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I Variable Neighborhood Search and Large Scale Neighborhood Search
diversified neighborhoods + incremental algorithmics ("diversified" ≡
multiple, variable-size, and rich).

I Tabu Search: Online learning of moves
Discard undoing moves,
Discard inefficient moves
Improve efficient moves selection

I Simulated annealing
Allow degrading solutions

I “Restart” + parallel search
Avoid local optima
Improve search space coverage
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For given problem instance π:

1. search space Sπ, solution representation: variables + implicit constraints

2. evaluation function fπ : S → R, soft constraints + objective

3. neighborhood relation Nπ ⊆ Sπ × Sπ

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}
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LS-Decision(π)
input: problem instance π ∈ Π
output: solution s ∈ S ′(π) or ∅
(s,m) := init(π)

while not terminate(π, s, m) do
(s,m) := step(π, s, m)

if s ∈ S ′(π) then
return s

else
return ∅

LS-Minimization(π′)
input: problem instance π′ ∈ Π′

output: solution s ∈ S ′(π′) or ∅
(s,m) := init(π′);
sb := s;
while not terminate(π′, s, m) do

(s,m) := step(π′, s, m);
if f (π′, s) < f (π′, ŝ) then

sb := s;

if sb ∈ S ′(π′) then
return sb

else
return ∅

However, the algorithm on the left has little guidance, hence most often
decision problems are transformed in optimization problems by, eg, couting
number of violations.
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I does not use memory
I init: uniform random choice from S or construction heuristic
I step: uniform random choice from improving neighbors

Pr(s, s ′) =

{
1/|I (s)| if s ′ ∈ I (s)

0 otherwise

where I (s) := {s ′ ∈ S | N (s, s ′) and f (s ′) < f (s)}

I terminates when no improving neighbor available

Note: Iterative improvement is also known as iterative descent or
hill-climbing.
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Pivoting rule decides which neighbors go in I (s)

I Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbors,
i.e., I (s) := {s ′ ∈ N(s) | f (s ′) = g∗},
where g∗ := min{f (s ′) | s ′ ∈ N(s)}.

Note: Requires evaluation of all neighbors in each step!

I First Improvement: Evaluate neighbors in fixed order,
choose first improving one encountered.

Note: Can be more efficient than Best Improvement but not in the worst
case; order of evaluation can impact performance.
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Iterative Improvement for SAT

I search space S : set of all truth assignments to variables in given formula F
(solution set S ′: set of all models of F )

I neighborhood relation N : 1-flip neighborhood
I memory: not used, i.e., M := {0}
I initialization: uniform random choice from S , i.e., init(∅, {a}) := 1/|S | for all

assignments a
I evaluation function: f (a) := number of clauses in F

that are unsatisfied under assignment a
(Note: f (a) = 0 iff a is a model of F .)

I step function: uniform random choice from improving neighbors, i.e.,
step(a, a′) := 1/|I (a)| if a′ ∈ I (a),
and 0 otherwise, where I (a) := {a′ | N (a, a′) ∧ f (a′) < f (a)}

I termination: when no improving neighbor is available
i.e., terminate(a) := > if I (a) = ∅, and 0 otherwise.

21



Local Search Algorithms
Basic AlgorithmsExamples

Random order first improvement for SAT
URW-for-SAT(F ,maxSteps)
input: propositional formula F , integer maxSteps
output: a model for F or ∅
choose assignment ϕ of truth values to all variables in F

uniformly at random;
steps := 0;
while ¬(ϕ satisfies F ) and (steps < maxSteps) do

select x uniformly at random from {x ′|x ′ is a variable in F and
changing value of x ′ in ϕ decreases the number of unsatisfied clauses}
steps := steps+1;

if ϕ satisfies F then
return ϕ

else
return ∅
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Iterative Improvement

queensLS00.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size, v in Size : S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations() <<

endl;
}
it = it + 1;

}
cout << queen << endl;� �
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Best Improvement

queensLS0.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

selectMin(q in Size,v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations()

<<endl;
}
it = it + 1;

}
cout << queen << endl;� �
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First Improvement

queensLS2.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

selectFirst(q in Size, v in Size: S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations()

<<endl;
}
it = it + 1;

}
cout << queen << endl;� �
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Min Conflict Heuristic

queensLS0b.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {

select(q in Size : S.violations(queen[q])>0) {
selectMin(v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations()

<<endl;
}
it = it + 1;

}
}
cout << queen << endl;� �
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