
DM841

Discrete Optimization

Part 2 – Lecture 4
Beyond Local Search

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Local Search RevisitedOutline

1. Local Search Revisited
Components

2

Local Search RevisitedResumé: Constraint-Based Local Search

Constraint-Based Local Search = Modelling + Search

3

Local Search RevisitedResumé: Local Search Modelling

Optimization problem (decision problems 7→ optimization):

I Parameters

I Variables and Solution Representation
implicit constraints

I Soft constraint violations

I Evaluation function: soft constraints + objective function

Differentiable objects:

I Neighborhoods

I Delta evaluations
Invariants defined by one-way constraints

4

Local Search RevisitedResumé: Local Search Algorithms
A theoretical framework

For given problem instance π:

1. search space Sπ, solution representation: variables + implicit constraints

2. evaluation function fπ : S → R, soft constraints + objective

3. neighborhood relation Nπ ⊆ Sπ × Sπ

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}

Computational analysis on each of these components is necessay!
5

Local Search RevisitedResumé: Local Search Algorithms

I Random Walk

I First/Random Improvement

I Best Improvement

I Min Conflict Heuristic

The step is the component that changes. It is also called: pivoting rule (for
allusion to the simplex for LP)

6

Local Search RevisitedExamples: TSP

Random-order first improvement for the TSP

I Given: TSP instance G with vertices v1, v2, . . . , vn.
I Search space: Hamiltonian cycles in G ;
I Neighborhood relation N: standard 2-exchange neighborhood

I Initialization:
search position := fixed canonical tour < v1, v2, . . . , vn, v1 >
“mask” P := random permutation of {1, 2, . . . , n}

I Search steps: determined using first improvement
w.r.t. f (s) = cost of tour s, evaluating neighbors
in order of P (does not change throughout search)

I Termination: when no improving search step possible
(local minimum)

7

Local Search RevisitedExamples: TSP

Iterative Improvement for TSP
TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ Sπ

for i = 1 to n − 1 do
for j = i + 1 to n do

if P[i] + 1 ≥ n or P[j] + 1 ≥ n then continue ;
if P[i] + 1 = P[j] or P[j] + 1 = P[i] then continue ;

∆ij = d(πP[i], πP[j]) + d(πP[i]+1, πP[j]+1)+
−d(πP[i], πP[i]+1)− d(πP[j], πP[j]+1)

if ∆ij < 0 then
UpdateTour(s, P[i], P[j])

is it really?

8

Local Search RevisitedExamples

Iterative Improvement for TSP
TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ Sπ

FoundImprovement:=TRUE;
while FoundImprovement do

FoundImprovement:=FALSE;
for i = 1 to n − 1 do

for j = i + 1 to n do
if P[i] + 1 ≥ n or P[j] + 1 ≥ n then continue ;
if P[i] + 1 = P[j] or P[j] + 1 = P[i] then continue ;

∆ij = d(πP[i], πP[j]) + d(πP[i]+1, πP[j]+1)+
−d(πP[i], πP[i]+1)− d(πP[j], πP[j]+1)

if ∆ij < 0 then
UpdateTour(s, P[i], P[j])
FoundImprovement=TRUE

9

Local Search RevisitedOutline

1. Local Search Revisited
Components

10

Local Search RevisitedOutline

1. Local Search Revisited
Components

11

Local Search RevisitedLS Algorithm Components
Search space

Search Space

Solution representations defined by the variables and the implicit constraints:

I permutations (implicit: alldiffrerent)
I linear (scheduling problems)
I circular (traveling salesman problem)

I arrays (implicit: assign exactly one, assignment problems: GCP)

I sets (implicit: disjoint sets, partition problems: graph partitioning, max
indep. set)

 Multiple viewpoints are useful also in local search!

12

Local Search RevisitedLS Algorithm Components
Evaluation function

Evaluation (or cost) function:
I function fπ : Sπ → Q that maps candidate solutions of

a given problem instance π onto rational numbers (most often integer),
such that global optima correspond to solutions of π;

I used for assessing or ranking neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:
I Evaluation function: part of LS algorithm.
I Objective function: integral part of optimization problem.
I Some LS methods use evaluation functions different from given objective

function (e.g., guided local search).

13

Local Search RevisitedConstrained Optimization Problems

Constrained Optimization Problems exhibit two issues:

I feasibility
eg, treveling salesman problem with time windows: customers must be
visited within their time window.

I optimization
minimize the total tour.

How to combine them in local search?

I sequence of feasibility problems
I staying in the space of feasible candidate solutions
I considering feasible and infeasible configurations

14

Local Search RevisitedConstraint-based local search
From Van Hentenryck and Michel

If infeasible solutions are allowed, we count violations of constraints.

What is a violation?
Constraint specific:

I decomposition-based violations
number of violated constraints, eg: alldiff

I variable-based violations
min number of variables that must be changed to satisfy c .

I value-based violations
for constraints on number of occurences of values

I arithmetic violations

I combinations of these

15

Local Search RevisitedConstraint-based local search
From Van Hentenryck and Michel

Combinatorial constraints

I alldiff(x1, . . . , xn):
Let a be an assignment with values V = {a(x1), . . . , a(xn)} and
cv = #a(v , x) be the number of occurrences of v in a.
Possible definitions for violations are:

I viol =
∑

v∈V I (max{cv − 1, 0} > 0) value-based
I viol = maxv∈V max{cv − 1, 0} value-based
I viol =

∑
v∈V max{cv − 1, 0} value-based

I # variables with same value, variable-based, here leads to same
definitions as previous three

Arithmetic constraints

I l ≤ r viol = max{l − r , 0}
I l = r viol = |l − r |
I l 6= r viol = 1 if l = r , 0 otherwise

16

	Local Search Revisited
	Components

