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Local Search RevisitedOutline

1. Local Search Revisited
Components
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Local Search RevisitedResumé: Constraint-Based Local Search

Constraint-Based Local Search = Modelling + Search
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Local Search RevisitedResumé: Local Search Modelling

Optimization problem (decision problems 7→ optimization):

I Parameters

I Variables and Solution Representation
implicit constraints

I Soft constraint violations

I Evaluation function: soft constraints + objective function

Differentiable objects:

I Neighborhoods

I Delta evaluations
Invariants defined by one-way constraints
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Local Search RevisitedResumé: Local Search Algorithms
A theoretical framework

For given problem instance π:

1. search space Sπ, solution representation: variables + implicit constraints

2. evaluation function fπ : S → R, soft constraints + objective

3. neighborhood relation Nπ ⊆ Sπ × Sπ

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}

Computational analysis on each of these components is necessay!
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Local Search RevisitedResumé: Local Search Algorithms

I Random Walk

I First/Random Improvement

I Best Improvement

I Min Conflict Heuristic

The step is the component that changes. It is also called: pivoting rule (for
allusion to the simplex for LP)
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Local Search RevisitedExamples: TSP

Random-order first improvement for the TSP

I Given: TSP instance G with vertices v1, v2, . . . , vn.
I Search space: Hamiltonian cycles in G ;
I Neighborhood relation N: standard 2-exchange neighborhood

I Initialization:
search position := fixed canonical tour < v1, v2, . . . , vn, v1 >
“mask” P := random permutation of {1, 2, . . . , n}

I Search steps: determined using first improvement
w.r.t. f (s) = cost of tour s, evaluating neighbors
in order of P (does not change throughout search)

I Termination: when no improving search step possible
(local minimum)
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Local Search RevisitedExamples: TSP

Iterative Improvement for TSP
TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ Sπ

for i = 1 to n − 1 do
for j = i + 1 to n do

if P[i ] + 1 ≥ n or P[j ] + 1 ≥ n then continue ;
if P[i ] + 1 = P[j ] or P[j ] + 1 = P[i ] then continue ;

∆ij = d(πP[i ], πP[j ]) + d(πP[i ]+1, πP[j ]+1)+
−d(πP[i ], πP[i ]+1)− d(πP[j ], πP[j ]+1)

if ∆ij < 0 then
UpdateTour(s, P[i], P[j])

is it really?
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Local Search RevisitedExamples

Iterative Improvement for TSP
TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ Sπ

FoundImprovement:=TRUE;
while FoundImprovement do

FoundImprovement:=FALSE;
for i = 1 to n − 1 do

for j = i + 1 to n do
if P[i ] + 1 ≥ n or P[j ] + 1 ≥ n then continue ;
if P[i ] + 1 = P[j ] or P[j ] + 1 = P[i ] then continue ;

∆ij = d(πP[i ], πP[j ]) + d(πP[i ]+1, πP[j ]+1)+
−d(πP[i ], πP[i ]+1)− d(πP[j ], πP[j ]+1)

if ∆ij < 0 then
UpdateTour(s, P[i], P[j])
FoundImprovement=TRUE
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Local Search RevisitedLS Algorithm Components
Search space

Search Space

Solution representations defined by the variables and the implicit constraints:

I permutations (implicit: alldiffrerent)
I linear (scheduling problems)
I circular (traveling salesman problem)

I arrays (implicit: assign exactly one, assignment problems: GCP)

I sets (implicit: disjoint sets, partition problems: graph partitioning, max
indep. set)

 Multiple viewpoints are useful also in local search!
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Local Search RevisitedLS Algorithm Components
Evaluation function

Evaluation (or cost) function:
I function fπ : Sπ → Q that maps candidate solutions of

a given problem instance π onto rational numbers (most often integer),
such that global optima correspond to solutions of π;

I used for assessing or ranking neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:
I Evaluation function: part of LS algorithm.
I Objective function: integral part of optimization problem.
I Some LS methods use evaluation functions different from given objective

function (e.g., guided local search).
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Local Search RevisitedConstrained Optimization Problems

Constrained Optimization Problems exhibit two issues:

I feasibility
eg, treveling salesman problem with time windows: customers must be
visited within their time window.

I optimization
minimize the total tour.

How to combine them in local search?

I sequence of feasibility problems
I staying in the space of feasible candidate solutions
I considering feasible and infeasible configurations
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Local Search RevisitedConstraint-based local search
From Van Hentenryck and Michel

If infeasible solutions are allowed, we count violations of constraints.

What is a violation?
Constraint specific:

I decomposition-based violations
number of violated constraints, eg: alldiff

I variable-based violations
min number of variables that must be changed to satisfy c .

I value-based violations
for constraints on number of occurences of values

I arithmetic violations

I combinations of these
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Local Search RevisitedConstraint-based local search
From Van Hentenryck and Michel

Combinatorial constraints

I alldiff(x1, . . . , xn):
Let a be an assignment with values V = {a(x1), . . . , a(xn)} and
cv = #a(v , x) be the number of occurrences of v in a.
Possible definitions for violations are:

I viol =
∑

v∈V I (max{cv − 1, 0} > 0) value-based
I viol = maxv∈V max{cv − 1, 0} value-based
I viol =

∑
v∈V max{cv − 1, 0} value-based

I # variables with same value, variable-based, here leads to same
definitions as previous three

Arithmetic constraints

I l ≤ r  viol = max{l − r , 0}
I l = r  viol = |l − r |
I l 6= r  viol = 1 if l = r , 0 otherwise
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