DM841 Discrete Optimization

Methods for Experimental Analysis

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Course Overview

- ✓ Combinatorial Optimization, Methods and Models
- ✔ CH and LS: overview
- ✓ Working Environment and Solver Systems
 - ~ Methods for the Analysis of Experimental Results
- Construction Heuristics
- ✓ Local Search: Components, Basic Algorithms
- ✔ Efficient Local Search: Incremental Updates and Neighborhood Pruning
- ✓ Local Search: Neighborhoods and Search Landscape
- ✓ Stochastic Local Search & Metaheuristics
 - ~ Configuration Tools: F-race
- Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree, Unrelated Parallel Machines, p-median, set covering, QAP, ...

1. Experimental Methods: Inferential Statistics

Statistical Tests Experimental Designs Applications to Our Scenarios

1. Experimental Methods: Inferential Statistics

Statistical Tests Experimental Designs Applications to Our Scenarios

1. Experimental Methods: Inferential Statistics Statistical Tests

Experimental Designs Applications to Our Scenarios

Inferential Statistics

- We work with samples (instances, solution quality)
- But we want sound conclusions: generalization over a given population (all runs, all possible instances)
- Thus we need statistical inference

Since the analysis is based on finite-sized sampled data, statements like

"the cost of solutions returned by algorithm ${\cal A}$ is smaller than that of algorithm ${\cal B}"$

must be completed by

"at a level of significance of 5%".

A Motivating Example

- ► There is a competition and two stochastic algorithms A_1 and A_2 are submitted.
- ▶ We run both algorithms once on n instances.
 On each instance either A₁ wins (+) or A₂ wins (-) or they make a tie (=).

Questions:

- 1. If we have only 10 instances and algorithm A_1 wins 7 times how confident are we in claiming that algorithm A_1 is the best?
- 2. How many instances and how many wins should we observe to gain a confidence of 95% that the algorithm A_1 is the best?

A Motivating Example

- ▶ p: probability that A_1 wins on each instance (+)
- n: number of runs without ties
- Y: number of wins of algorithm \mathcal{A}_1

If each run is independent and consitent:

$$Y \sim B(n,p)$$
: $\Pr[Y=y] = \binom{n}{y} p^y (1-p)^{n-y}$

Number of Successes

1 If we have only 10 instances and algorithm A_1 wins 7 times how confident are we in claiming that algorithm A_1 is the best?

Under these conditions, we can check how unlikely the situation is if it were $p(+) \leq p(-).$

If p = 0.5 then the chance that algorithm A_1 wins 7 or more times out of 10 is 17.2%: quite high!

2 How many instances and how many wins should we observe to gain a confidence of 95% that the algorithm A_1 is the best?

To answer this question, we compute the 95% quantile, *i.e.*, $y : \Pr[Y \ge y] < 0.05$ with p = 0.5 at different values of n:

n	10	11	12	13	14	15	16	17	18	19	20
y	9	9	10	10	11	12	12	13	13	14	15

This is an application example of sign test, a special case of binomial test in which $p=0.5\,$

Statistical tests

General procedure:

- ► Assume that data are consistent with a null hypothesis H₀ (e.g., sample data are drawn from distributions with the same mean value).
- Use a statistical test to compute how likely this is to be true, given the data collected. This "likely" is quantified as the p-value.
- ► Do not reject H_0 if the p-value is larger than an user defined threshold called level of significance α .
- ► Alternatively, (p-value < α), H₀ is rejected in favor of an alternative hypothesis, H₁, at a level of significance of α.

Two kinds of errors may be committed when testing hypothesis:

$$\alpha = P(\text{type I error}) = P(\text{reject } H_0 \mid H_0 \text{ is true})$$

$$\beta = P(\text{type II error}) = P(\text{fail to reject } H_0 \mid H_0 \text{ is false})$$

General rule:

- 1. specify the type I error or level of significance α
- 2. seek the test with a suitable large statistical power, i.e., $1 \beta = P(\text{reject } H_0 | H_0 \text{ is false})$

Theorem: Central Limit Theorem

If X^n is a random sample from an **arbitrary** distribution with mean μ and variance σ then the average \bar{X}^n is asymptotically normally distributed, *i.e.*,

$$\bar{X}^n \approx N(\mu, \frac{\sigma^2}{n})$$
 or $z = \frac{\bar{X}^n - \mu}{\sigma/\sqrt{n}} \approx N(0, 1)$

- ► Consequences:
 - allows inference from a sample
 - \blacktriangleright allows to model errors in measurements: $X=\mu+\epsilon$
- Issues:
 - n should be enough large
 - μ and σ must be known

Samples of size 1, 5, 15, 50 repeated 100 times

19

Hypothesis Testing and Confidence Intervals

A test of hypothesis determines how likely a sampled estimate $\hat{\theta}$ is to occur under some assumptions on the parameter θ of the population.

$$Pr\left\{\mu - z_1 \frac{\sigma}{\sqrt{n}} \le \bar{X} \le \mu + z_2 \frac{\sigma}{\sqrt{n}}\right\} = 1 - \alpha$$

A confidence interval contains all those values that a parameter θ is likely to assume with probability $1 - \alpha$: $Pr(\hat{\theta}_1 < \theta < \hat{\theta}_2) = 1 - \alpha$

$$Pr\left\{\bar{X} - z_1 \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_2 \frac{\sigma}{\sqrt{n}}\right\} = 1 - \alpha$$

Statistical Tests The Procedure of Test of Hypothesis

1. Specify the parameter θ and the test hypothesis,

$$\theta = \mu_1 - \mu_2 \qquad \begin{cases} H_0 : \theta = 0\\ H_1 : \theta \neq 0 \end{cases}$$

- 2. Obtain $P(\theta|\theta=0),$ the null distribution of θ
- 3. Compare $\hat{\theta}$ with the $\alpha/2$ -quantiles (for two-sided tests) of $P(\theta|\theta=0)$ and reject or not H_0 according to whether $\hat{\theta}$ is larger or smaller than this value.

Statistical Tests

1. Specify the parameter $\boldsymbol{\theta}$ and the test hypothesis,

$$\theta = \mu_1 - \mu_2 \qquad \begin{cases} H_0 : \theta = 0\\ H_1 : \theta \neq 0 \end{cases}$$

- 2. Obtain $P(\theta, \theta = 0)$, the null distribution of θ in correspondence of the observed estimate $\hat{\theta}$ of the sample X
- 3. Determine $(\hat{\theta}^-, \hat{\theta}^+)$ such that $Pr\{\hat{\theta}^- \leq \theta \leq \hat{\theta}^+\} = 1 \alpha.$
- 4. Do not reject H_0 if $\theta = 0$ falls inside the interval $(\hat{\theta}^-, \hat{\theta}^+)$. Otherwise reject H_0 .

Statistical Tests

1. Specify the parameter $\boldsymbol{\theta}$ and the test hypothesis,

$$\theta = \mu_1 - \mu_2 \qquad \begin{cases} H_0 : \theta = 0\\ H_1 : \theta \neq 0 \end{cases}$$

- 2. Obtain $P(\theta, \theta = 0)$, the null distribution of θ in correspondence of the observed estimate $\hat{\theta}$ of the sample X
- 3. Determine $(\hat{\theta}^-, \hat{\theta}^+)$ such that $Pr\{\hat{\theta}^- \leq \theta \leq \hat{\theta}^+\} = 1 \alpha.$
- 4. Do not reject H_0 if $\theta = 0$ falls inside the interval $(\hat{\theta}^-, \hat{\theta}^+)$. Otherwise reject H_0 .

Kolmogorov-Smirnov Tests

The test compares empirical cumulative distribution functions.

It uses maximal difference between the two curves, $sup_x|F_1(x) - F_2(x)|$, and assesses how likely this value is under the null hypothesis that the two curves come from the same data

The test can be used as a two-samples or single-sample test (in this case to test against theoretical distributions: goodness of fit)

Parametric vs Nonparametric

Parametric assumptions:

- independence
- homoschedasticity
- normality

Nonparametric assumptions:

- independence
- homoschedasticity

- Rank based tests
- Permutation tests
 - Exact
 - Conditional Monte Carlo

Experimental Methods: Inferential Statistics Statistical Tests Experimental Designs Applications to Our Scenarios

Preparation of the Experiments

Variance reduction techniques

- Blocking on instances
- Same pseudo random seed

Sample Sizes

- If the sample size is large enough (infinity) any difference in the means of the factors, no matter how small, will be significant
- Real vs Statistical significance Study factors until the improvement in the response variable is deemed small
- Desired statistical power + practical precision \Rightarrow sample size

Note: If resources available for N runs then the optimal design is one run on N instances $[{\rm Birattari},\,2004]$

The Design of Experiments for Algorithn Sciential Testing

- Statement of the objectives of the experiment
 - Comparison of different algorithms
 - Impact of algorithm components
 - How instance features affect the algorithms
- Identification of the sources of variance
 - Treatment factors (qualitative and quantitative)
- Definition of factor combinations to test
 Easiest design: Unreplicated or Replicated Full Factorial Design
- Running a pilot experiment and refine the design
 - Bugs and no external biases
 - Ceiling or floor effects
 - Rescaling levels of quantitative factors
 - Detect the number of experiments needed to obtained the desired power.

Experimental Design

 $\label{eq:algorithms} \mathsf{Algorithms} \Rightarrow \mathsf{Treatment}\;\mathsf{Factor}; \qquad \mathsf{Instances} \Rightarrow \mathsf{Blocking}/\mathsf{Random}\;\mathsf{Factor}$

Design A: One run on various instances (Unreplicated Factorial)

	Algorithm 1	Algorithm 2	 Algorithm k
Instance 1	X_{11}	X_{12}	X_{1k}
-	÷	÷	
Instance b	X_{b1}	X_{b2}	X_{bk}

Design B: Several runs on various instances (Replicated Factorial)

	Algorithm 1	Algorithm 2	 Algorithm k
Instance 1	X_{111}, \ldots, X_{11r}	X_{121}, \ldots, X_{12r}	X_{1k1}, \ldots, X_{1kr}
Instance 2	X_{211}, \ldots, X_{21r}	X_{221}, \ldots, X_{22r}	X_{2k1},\ldots,X_{2kr}
:	-	:	:
Instance b	X_{b11},\ldots,X_{b1r}	X_{b21},\ldots,X_{b2r}	X_{bk1}, \ldots, X_{bkr}

Multiple Comparisons

 $H_0: \ \mu_1 = \mu_2 = \mu_3 = \dots$ $H_1: \{ \text{at least one differs} \}$

Applying a statistical test to all pairs the error of Type I is not α but higher:

$$\alpha_{EX} = 1 - (1 - \alpha)^c$$

Eg, for $\alpha = 0.05$ and $c = 3 \Rightarrow \alpha_{EX} = 0.14!$

Adjustment methods

- Protected versions: global test + no adjustments
- Bonferroni $\alpha = \alpha_{EX}/c$ (conservative)
- Tukey Honest Significance Method (for parametric analysis)
- Holm (step-wise)
- Other step procedures

Post-hoc analysis: Once the effect of factors has been recognized a finer grained analysis is performed to distinguish where important differences are.

1. Experimental Methods: Inferential Statistics

Statistical Tests Experimental Designs Applications to Our Scenarios

Several runs on a single instance

Global tests	Replicated				
Parametric	F-test				
Non-Parametric Rank based	Kruskall-Wallis Test				
Non-Parametric Permutation based	Pooled Permutations				
<i>Non-Parametric</i> KS type	Birnbaum-Hall test				

Several runs on a single instance

Pairwise tests	Replicated
Parametric	t-test Tukey HSD
<i>Non-Parametric</i> Rank based	Kruskall-Wallis Test or Mann-Whitney test ≡ <i>Wilcoxon</i> <i>Rank Sum Test</i> or Binomial test
Non-Parametric Permutation based	Pooled Permutations
<i>Non-Parametric</i> KS type	Birnbaum-Hall test

- Matched pairs versions: when, when not
- t-test with different variances

On various instances (Designs A and B)

Global tests	Unreplicated (Design A)	Replicated (Design B)
Parametric	F-test	F-test
<i>Non-Parametric</i> Rank based	Friedman Test	Friedman Test
Non-Parametric Permutation based	Simple Permutations	Synchronized Permutations

On various instances (Designs A and B)

Pairwise tests	Unreplicated Replicated			
Parametric	t-test Tukey HSD	t-test Tukey HSD		
<i>Non-Parametric</i> Rank based	Friedman Test or <i>Wilcoxon Signed Rank</i> <i>Test</i>	Friedman Test		
Non-Parametric Permutation based	Simple Permutations	Synchronized Permutations		

- Matched pairs versions: when, when not
- t-test Welch variant: no assumption of equal variances

SLS algorithms for Graph Coloring: Results collected on a set of benchmark instances

Instance	HE	A	TS⊦	V1	ILS	5	MinConf		XRLF	
Instance	Succ.	k	Succ.	k	Succ.	k	Succ.	k	Succ.	k
flat300_20_0	10	20	10	20	10	20	10	20	6	20
flat300_26_0	10	26	10	26	10	26	10	26	1	33
flat300_28_0	6	31	4	31	2	31	1	31	1	34
flat1000_50_0	4	50	2	85	6	88	4	87	1	84
flat1000_60_0	4	87	3	88	1	89	4	89	6	87
flat1000_76_0	1	88	1	88	1	89	8	90	6	87
	GLS		SA _{N2}		Novelty		TS _{N3}			
Instance	Succ.	k	Succ.	k	Succ.	k	Succ.	k	1	
flat300_20_0	10	20	10	20	1	22	1	33		
flat300_26_0	10	33	1	32	4	29	6	35		
flat300_28_0	8	33	8	33	10	35	4	35		
flat1000_50_0	10	50	1	86	6	54	1	95		
flat1000_60_0	4	90	1	88	4	64	1	96		
flat1000_76_0	8	92	4	89	8	98	1	96		

Raw data on the instances:

Note: notches are not appropriate for comparative inference

```
> pairwise.wilcox.test(G$err3,G$alg,paired=TRUE)
```

Pairwise comparisons using Wilcoxon rank sum test

data: G\$err3 and G\$alg

	Novelty	HEA	TSinN1	ILS	MinConf	GLS2	XRLF	SAKempeFI
HEA	1.00000	-	-	-	-	-	-	-
TSinN1	1.00000	0.00413	-	-	-	-	-	-
ILS	1.00000	1.3e-05	0.00072	-	-	-	-	-
MinConf	1.00000	9.4e-06	0.00042	1.00000	-	-	-	-
GLS2	1.00000	0.11462	0.94136	1.00000	1.00000	-	-	-
XRLF	0.25509	1.7e-05	0.02624	0.72455	0.47729	1.00000	-	-
SAKempeFI	0.72455	1.4e-07	3.0e-06	0.02708	0.02113	1.00000	1.00000	-
TSinN3	3.7e-08	5.8e-10						

P value adjustment method: holm

$> par(las=1,mar=c(3,8,3,1)) \\> plot(TukeyHSD(aov(err3~alg*inst,data=G),which="alg"),las=1,mar=c(3,7,3,1))$

95% family-wise confidence level

Differences are statistically significant if the confidence intervals do not overlap

1. Experimental Methods: Inferential Statistics

Statistical Tests Experimental Designs Applications to Our Scenarios

Unreplicated Designs

Procedure Race [Birattari 2002]:

repeat

Randomly select an unseen instance and run all candidates on it Perform *all-pairwise comparison* statistical tests Drop all candidates that are significantly inferior to the best algorithm **until** only one candidate left or no more unseen instances;

F-Race use Friedman test

Holm adjustment method is typically the most powerful

class-GEOMb (11 Instances)