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Experimental Methods
Sequential TestingCourse Overview

4 Combinatorial Optimization, Methods and Models

4 CH and LS: overview

4 Working Environment and Solver Systems

˜ Methods for the Analysis of Experimental Results

4 Construction Heuristics

4 Local Search: Components, Basic Algorithms

4 Efficient Local Search: Incremental Updates and Neighborhood Pruning

4 Local Search: Neighborhoods and Search Landscape

4 Stochastic Local Search & Metaheuristics

˜ Configuration Tools: F-race
I Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
Unrelated Parallel Machines, p-median, set covering, QAP, ...
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Experimental Methods
Sequential TestingOutline

1. Experimental Methods: Inferential Statistics
Statistical Tests
Experimental Designs
Applications to Our Scenarios

2. Race: Sequential Testing
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Experimental Methods
Sequential TestingInferential Statistics

I We work with samples (instances, solution quality)
I But we want sound conclusions: generalization over a given population

(all runs, all possible instances)
I Thus we need statistical inference

Random Sample
Xn

Statistical Estimator θ̂

Population
P (x, θ)

Parameter θ

Inference

Since the analysis is based on finite-sized sampled data, statements like
“the cost of solutions returned by algorithm A is smaller than that
of algorithm B”

must be completed by

“at a level of significance of 5%”.
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Experimental Methods
Sequential TestingA Motivating Example

I There is a competition and two stochastic algorithms A1 and A2 are
submitted.

I We run both algorithms once on n instances.
On each instance either A1 wins (+) or A2 wins (-) or they make a tie
(=).

Questions:

1. If we have only 10 instances and algorithm A1 wins 7 times how
confident are we in claiming that algorithm A1 is the best?

2. How many instances and how many wins should we observe to gain a
confidence of 95% that the algorithm A1 is the best?

12



Experimental Methods
Sequential TestingA Motivating Example

I p: probability that A1 wins on each instance (+)
I n: number of runs without ties
I Y : number of wins of algorithm A1

If each run is indepenedent and consitent:

Y ∼ B(n, p) : Pr[Y = y] =

(
n

y

)
py(1− p)n−y

10 15 20

0.
00

0.
04

0.
08

0.
12

Binomial Distribution: Trials = 30,
 Probability of success = 0.5

Number of Successes

P
ro

ba
bi

lit
y 

M
as

s

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

13



Experimental Methods
Sequential Testing

1 If we have only 10 instances and algorithm A1 wins 7 times how
confident are we in claiming that algorithm A1 is the best?

Under these conditions, we can check how unlikely the situation is if it were
p(+) ≤ p(−).

If p = 0.5 then the chance that algorithm A1 wins 7 or more times out of 10
is 17.2%: quite high!
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Sequential Testing

2 How many instances and how many wins should we observe to gain a
confidence of 95% that the algorithm A1 is the best?

To answer this question, we compute the 95% quantile, i.e.,
y : Pr[Y ≥ y] < 0.05 with p = 0.5 at different values of n:

n 10 11 12 13 14 15 16 17 18 19 20
y 9 9 10 10 11 12 12 13 13 14 15

This is an application example of sign test, a special case of binomial test in
which p = 0.5
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Experimental Methods
Sequential TestingStatistical tests

General procedure:

I Assume that data are consistent with a null hypothesis H0 (e.g., sample
data are drawn from distributions with the same mean value).

I Use a statistical test to compute how likely this is to be true, given the
data collected. This “likely” is quantified as the p-value.

I Do not reject H0 if the p-value is larger than an user defined threshold
called level of significance α.

I Alternatively, (p-value < α), H0 is rejected in favor of an alternative
hypothesis, H1, at a level of significance of α.
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Experimental Methods
Sequential TestingInferential Statistics

Two kinds of errors may be committed when testing hypothesis:

α = P (type I error) = P (reject H0 |H0 is true)

β = P (type II error) = P (fail to reject H0 |H0 is false)

General rule:

1. specify the type I error or level of significance α
2. seek the test with a suitable large statistical power, i.e.,

1− β = P (reject H0 |H0 is false)
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Experimental Methods
Sequential Testing

Theorem: Central Limit Theorem

If Xn is a random sample from an arbitrary distribution with mean µ and
variance σ then the average X̄n is asymptotically normally distributed, i.e.,

X̄n ≈ N(µ,
σ2

n
) or z =

X̄n − µ
σ/
√
n
≈ N(0, 1)

I Consequences:
I allows inference from a sample
I allows to model errors in measurements: X = µ+ ε

I Issues:
I n should be enough large
I µ and σ must be known
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Experimental Methods
Sequential TestingHypothesis Testing and Confidence Intervals

A test of hypothesis determines how
likely a sampled estimate θ̂ is to occur
under some assumptions on the
parameter θ of the population.

Pr
{
µ−z1

σ√
n
≤ X̄ ≤ µ+z2

σ√
n

}
= 1−α

µ
X̄1

X̄2

X̄3

A confidence interval contains all
those values that a parameter θ is
likely to assume with probability
1− α: Pr(θ̂1 < θ < θ̂2) = 1− α

Pr
{
X̄−z1

σ√
n
≤ µ ≤ X̄+z2

σ√
n

}
= 1−α

µ
X̄1

X̄2

X̄3
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Experimental Methods
Sequential TestingStatistical Tests

The Procedure of Test of Hypothesis

θ

µ1 µ2

1. Specify the parameter θ and the test
hypothesis,

θ = µ1 − µ2

{
H0 : θ = 0
H1 : θ 6= 0

2. Obtain P (θ|θ = 0), the null distribution
of θ

3. Compare θ̂ with the α/2-quantiles (for
two-sided tests) of P (θ|θ = 0) and reject
or not H0 according to whether θ̂ is
larger or smaller than this value.
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Experimental Methods
Sequential TestingStatistical Tests

The Confidence Intervals Procedure

θ

µ1 µ2

N(µ1, σ) N(µ2, σ)

(X̄1, SX1) (X̄2, SX2)

θ = 0
θ̂

θ̂

1. Specify the parameter θ and the test
hypothesis,

θ = µ1 − µ2

{
H0 : θ = 0
H1 : θ 6= 0

2. Obtain P (θ, θ = 0), the null
distribution of θ in correspondence of
the observed estimate θ̂ of the sample
X

3. Determine (θ̂−, θ̂+) such that
Pr{θ̂− ≤ θ ≤ θ̂+} = 1− α.

4. Do not reject H0 if θ = 0 falls inside
the interval (θ̂−, θ̂+). Otherwise
reject H0.
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Experimental Methods
Sequential TestingStatistical Tests

The Confidence Intervals Procedure

P (θ1) P (θ2)

T =
(X̄1−X̄2)−

(
µ1−µ2

)
√
SX1

−SX2
r

T: Student’s t Distribution
θ∗ = X̄∗

1 − X̄∗
2

θ = 0
θ̂

θ̂

1. Specify the parameter θ and the test
hypothesis,

θ = µ1 − µ2

{
H0 : θ = 0
H1 : θ 6= 0

2. Obtain P (θ, θ = 0), the null
distribution of θ in correspondence of
the observed estimate θ̂ of the sample
X

3. Determine (θ̂−, θ̂+) such that
Pr{θ̂− ≤ θ ≤ θ̂+} = 1− α.

4. Do not reject H0 if θ = 0 falls inside
the interval (θ̂−, θ̂+). Otherwise
reject H0.
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Experimental Methods
Sequential TestingKolmogorov-Smirnov Tests

The test compares empirical cumulative distribution functions.
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It uses maximal difference between the two curves, supx|F1(x)− F2(x)|, and
assesses how likely this value is under the null hypothesis that the two curves
come from the same data

The test can be used as a two-samples or single-sample test (in this case to
test against theoretical distributions: goodness of fit)

The test can be done in R with ks.test
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Experimental Methods
Sequential TestingParametric vs Nonparametric

Parametric assumptions:
I independence
I homoschedasticity
I normality

N(µ, σ)

Nonparametric assumptions:
I independence
I homoschedasticity

P (θ)

I Rank based tests
I Permutation tests

I Exact
I Conditional Monte Carlo
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Experimental Methods
Sequential TestingPreparation of the Experiments

Variance reduction techniques
I Blocking on instances
I Same pseudo random seed

Sample Sizes

I If the sample size is large enough (infinity) any difference in the means
of the factors, no matter how small, will be significant

I Real vs Statistical significance
Study factors until the improvement in the response variable is deemed
small

I Desired statistical power + practical precision ⇒ sample size

Note: If resources available for N runs then the optimal design is one run on
N instances [Birattari, 2004]
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Experimental Methods
Sequential TestingThe Design of Experiments for Algorithms

I Statement of the objectives of the experiment
I Comparison of different algorithms
I Impact of algorithm components
I How instance features affect the algorithms

I Identification of the sources of variance
I Treatment factors (qualitative and quantitative)
I Controllable nuisance factors ⇐ blocking
I Uncontrollable nuisance factors ⇐ measuring

I Definition of factor combinations to test
Easiest design: Unreplicated or Replicated Full Factorial Design

I Running a pilot experiment and refine the design
I Bugs and no external biases
I Ceiling or floor effects
I Rescaling levels of quantitative factors
I Detect the number of experiments needed to obtained the desired power.
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Experimental Methods
Sequential TestingExperimental Design

Algorithms⇒ Treatment Factor; Instances⇒ Blocking/Random Factor

Design A: One run on various instances (Unreplicated Factorial)

Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X11 X12 X1k

...
...

...
...

Instance b Xb1 Xb2 Xbk

Design B: Several runs on various instances (Replicated Factorial)

Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X111, . . . , X11r X121, . . . , X12r X1k1, . . . , X1kr

Instance 2 X211, . . . , X21r X221, . . . , X22r X2k1, . . . , X2kr

...
...

...
...

Instance b Xb11, . . . , Xb1r Xb21, . . . , Xb2r Xbk1, . . . , Xbkr
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Experimental Methods
Sequential TestingMultiple Comparisons

H0 : µ1 = µ2 = µ3 = . . . H1 : {at least one differs}

Applying a statistical test to all pairs the error of Type I is not α but higher:

αEX = 1− (1− α)c

Eg, for α = 0.05 and c = 3 ⇒ αEX = 0.14!

Adjustment methods

I Protected versions: global test + no adjustments
I Bonferroni α = αEX/c (conservative)
I Tukey Honest Significance Method (for parametric analysis)
I Holm (step-wise)
I Other step procedures

Post-hoc analysis: Once the effect of factors has been recognized a finer
grained analysis is performed to distinguish where important differences are.
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Experimental Methods
Sequential TestingStatistical Tests

Univariate Analysis

Several runs on a single instance

Global tests Replicated

Parametric F-test

Non-Parametric
Rank based Kruskall-Wallis Test

Non-Parametric
Permutation based Pooled Permutations

Non-Parametric
KS type Birnbaum-Hall test
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Experimental Methods
Sequential TestingStatistical Tests

Univariate Analysis

Several runs on a single instance

Pairwise tests Replicated

Parametric
t-test

Tukey HSD

Non-Parametric
Rank based

Kruskall-Wallis Test
or Mann-Whitney test ≡ Wilcoxon

Rank Sum Test or
Binomial test

Non-Parametric
Permutation based Pooled Permutations

Non-Parametric
KS type Birnbaum-Hall test

I Matched pairs versions: when, when not
I t-test with different variances
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Experimental Methods
Sequential TestingStatistical Tests

Univariate Analysis

On various instances (Designs A and B)

Global tests Unreplicated (Design A) Replicated (Design B)

Parametric F-test F-test

Non-Parametric
Rank based

Friedman Test Friedman Test

Non-Parametric
Permutation based

Simple Permutations Synchronized Permutations
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Experimental Methods
Sequential TestingStatistical Tests

Univariate Analysis

On various instances (Designs A and B)

Pairwise tests Unreplicated Replicated

Parametric
t-test

Tukey HSD
t-test

Tukey HSD

Non-Parametric
Rank based

Friedman Test
or Wilcoxon Signed Rank

Test
Friedman Test

Non-Parametric
Permutation based

Simple Permutations Synchronized Permutations

I Matched pairs versions: when, when not
I t-test Welch variant: no assumption of equal variances
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Experimental Methods
Sequential TestingAn Example

SLS algorithms for Graph Coloring:
Results collected on a set of benchmark instances

Instance HEA TSN1 ILS MinConf XRLF

Instance Succ. k Succ. k Succ. k Succ. k Succ. k

flat300_20_0 10 20 10 20 10 20 10 20 6 20
flat300_26_0 10 26 10 26 10 26 10 26 1 33
flat300_28_0 6 31 4 31 2 31 1 31 1 34
flat1000_50_0 4 50 2 85 6 88 4 87 1 84
flat1000_60_0 4 87 3 88 1 89 4 89 6 87
flat1000_76_0 1 88 1 88 1 89 8 90 6 87

GLS SAN2 Novelty TSN3

Instance Succ. k Succ. k Succ. k Succ. k

flat300_20_0 10 20 10 20 1 22 1 33
flat300_26_0 10 33 1 32 4 29 6 35
flat300_28_0 8 33 8 33 10 35 4 35
flat1000_50_0 10 50 1 86 6 54 1 95
flat1000_60_0 4 90 1 88 4 64 1 96
flat1000_76_0 8 92 4 89 8 98 1 96
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Experimental Methods
Sequential TestingAn Example

Raw data on
the instances:

col
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Sequential Testing

� �
> load("gcp-all-classes.dataR")
> G <− F[F$class=="Flat",]
> bwplot(alg ~ col inst,data=G,scales=list(x=list(relation="free")),pch="")
> boxplot(err3~alg,data=G,horizontal=TRUE,main=expression(paste("Invariant error: ",frac(x

-x^(opt),x^(worst)-x^(opt)))),notch=TRUE,col="pink")
> boxplot(rank~alg,data=G,horizontal=TRUE,main="Ranks",notch=TRUE,col="pink")� �
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Sequential TestingAn Example
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Note: notches
are not
appropriate for
comparative
inference
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Sequential Testing

� �
> pairwise.wilcox.test(G$err3,G$alg,paired=TRUE)

Pairwise comparisons using Wilcoxon rank sum test

data: G$err3 and G$alg� �
Novelty HEA TSinN1 ILS MinConf GLS2 XRLF SAKempeFI

HEA 1.00000 - - - - - - -
TSinN1 1.00000 0.00413 - - - - - -
ILS 1.00000 1.3e-05 0.00072 - - - - -
MinConf 1.00000 9.4e-06 0.00042 1.00000 - - - -
GLS2 1.00000 0.11462 0.94136 1.00000 1.00000 - - -
XRLF 0.25509 1.7e-05 0.02624 0.72455 0.47729 1.00000 - -
SAKempeFI 0.72455 1.4e-07 3.0e-06 0.02708 0.02113 1.00000 1.00000 -
TSinN3 3.7e-08 5.8e-10 5.8e-10 5.8e-10 5.8e-10 5.8e-10 5.8e-10 5.8e-10

P value adjustment method: holm
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� �
> par(las=1,mar=c(3,8,3,1))
> plot(TukeyHSD(aov(err3~alg∗inst,data=G),which="alg"),las=1,mar=c(3,7,3,1))� �
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Sequential TestingAn Example

X1 X2 X3

X1−X2

Alg. 1

Alg. 2

Alg. 3

MSD
2

Minimal Significant Difference
(MSD)

interval that satisfies
simultaneously each
comparison

Differences are statistically significant if the confidence intervals do not overlap
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Experimental Methods
Sequential TestingUnreplicated Designs

Procedure Race [Birattari 2002]:
repeat

Randomly select an unseen instance and run all candidates on it
Perform all-pairwise comparison statistical tests
Drop all candidates that are significantly inferior to the best algorithm

until only one candidate left or no more unseen instances;

I F-Race use Friedman test
I Holm adjustment method is typically the most powerful� �

race(wrapper.file, maxExp=0,
stat.test=c("friedman","t.bonferroni","t.holm","t.none"),

conf.level=0.95, first.test=5, interactive=TRUE,
log.file="", no.slaves=0,...)� �
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