
DM841

Discrete Optimization

Solvers

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Software ToolsOutline

1. Software Tools
Constraint-Based Local Search with CometTM

Local Solver

2



Software ToolsSoftware Tools

I Modeling languages
interpreted languages with a precise syntax and semantics

I Software libraries
collections of subprograms used to develop software

I Software frameworks
set of abstract classes and their interactions

I frozen spots (remain unchanged in any instantiation of the framework)
I hot spots (parts where programmers add their own code)

3



Software ToolsSoftware Tools

No well established software tools for Local Search:

I the apparent simplicity of Local Search induces to build applications
from scratch.

I model and search are more interdependent than in CP and MILP: ie,
constraints must be relaxed and this is hard to automatize

I the freedom of problem characteristics that can be tackled

I crucial roles played by delta/incremental updates which are highly
problem dependent

I the development of Local Search is in part a craft,
beside engineering and science. Very little if nothing has general validity

I However some attempts: Comet, LocalSolver, OscaR-CBLS

4



Software ToolsSoftware Tools

EasyLocal++ C++ Local Search
ParadisEO C++ Local Search, Evolutionary Algorithm
OpenTS Java Tabu Search
Comet Language
LocalSolver Modelling Language
Google OR Tools Libraries
OscaR-CBLS Modelling Language

EasyLocal++ http://tabu.diegm.uniud.it/EasyLocal++/
ParadisEO http://paradiseo.gforge.inria.fr
OpenTS http://www.coin-or.org/Ots
Comet http://dynadec.com/
LocalSolver http://www.localsolver.com/
Google OR Tools https://code.google.com/p/or-tools/
OscaR-CBLS http://oscarlib.bitbucket.org/cbls.html

5

http://tabu.diegm.uniud.it/EasyLocal++/
http://paradiseo.gforge.inria.fr
http://www.coin-or.org/Ots
http://dynadec.com/
http://www.localsolver.com/
https://code.google.com/p/or-tools/
http://oscarlib.bitbucket.org/cbls.html


Software ToolsOutline

1. Software Tools
Constraint-Based Local Search with CometTM

Local Solver

7



Software ToolsComet is

Unfortunately not Open Source

Developed by Pascal Van Hentenryck (Brown University), Laurent Michel
(University of Connecticut), now owned by Dynadec.

Not anymore in active development

10



Software ToolsConstraint-Based Local Search is

I Model

I Incremental variables
I Invariants
I Differentiable objects

I Functions
I Constraints
I Constraint Systems

I Search

I Local Search
I Iterative Improvement
I Tabu Search
I Simulated Annealing
I Guided Local Search

12



Software ToolsConstraint-Based Local Search is

I Model
I Incremental variables
I Invariants
I Differentiable objects

I Functions
I Constraints
I Constraint Systems

I Search
I Local Search

I Iterative Improvement
I Tabu Search
I Simulated Annealing
I Guided Local Search

12



Software ToolsOutline

1. Software Tools
Constraint-Based Local Search with CometTM

Local Solver

16



Software ToolsLocal Search Modelling Language

Enriched mathematical programming formulation:
I Boolean variables (0–1 programming)
I constriants (always satisfied) - decision between soft and hard left to user
I invariants
I objectives (lexicographics ordering)

Example (Bin-packing problem)

Input 3 items x , y , z of height 2,3,4 to pack into 2 piles A,B with B already
containing an item of height 5.
Task Minimize height of largest pile� �
xA <− bool(); yA <− bool(); zA <− bool();
xB <− bool(); yB <− bool(); zB <− bool();
constraint booleansum(xA, xB) = 1;
constraint booleansum(yA, yB) = 1;
constraint booleansum(zA, zB) = 1;
heightA <− sum(2xA, 3yA, 4zA);
heightB <− sum(2xB, 3yB, 4zB, 5);
objective <− max(heightA, heightB);
minimize objective;� �

17



Software ToolsLocal Search Modelling Language

Enriched mathematical programming formulation:
I Boolean variables (0–1 programming)
I constriants (always satisfied) - decision between soft and hard left to user
I invariants
I objectives (lexicographics ordering)

Example (Bin-packing problem)

Input 3 items x , y , z of height 2,3,4 to pack into 2 piles A,B with B already
containing an item of height 5.
Task Minimize height of largest pile� �
xA <− bool(); yA <− bool(); zA <− bool();
xB <− bool(); yB <− bool(); zB <− bool();
constraint booleansum(xA, xB) = 1;
constraint booleansum(yA, yB) = 1;
constraint booleansum(zA, zB) = 1;
heightA <− sum(2xA, 3yA, 4zA);
heightB <− sum(2xB, 3yB, 4zB, 5);
objective <− max(heightA, heightB);
minimize objective;� �

17



Software ToolsBlack-Box Local Search Solver

I initial solution: randomized greedy algorithm (constraints satisfied)
I search strategy (standard descent, simulated annealing, random restart

via multithreading)
I moves

specialized for constraints and feasibility
I incremental evaluation machinery

problem represented as a DAG: variables are roots, objectives leaves,
operators induce inner nodes
bredth-first search in DAG.

18



Software ToolsLocal Solver

Example (Graph Coloring)� �
/∗ Declares the optimization model. ∗/
function model(){

x[1..n][1..k] <− bool();
y[1..k] <− bool();

// Assign color
for[i in 1..n]

constraint sum[l in 1..k](x[i][l]) == 1;

for[c in 1..m][l in 1..k]
constraint sum[i in 1..v[c][0]](x[v[c][i]][l]) <= 1;

y[l in 1..k] <− max[i in 1..n](x[i][l]);

// Clique constraint
obj <− sum[l in 1..k](y[l]);
minimize obj;

}� �
19



Software ToolsLocal Solver

� �
/∗ Parameterizes the solver. ∗/
function param(){

if(lsTimeLimit == nil)
lsTimeLimit=600;

lsTimeBetweenDisplays = 10;
lsNbThreads = 4;
lsAnnealingLevel = 5;

}

/∗ Writes the solution in a file following the following format:
∗ each line contains a vertex number and its subset (1 for S, 0 for V−S) ∗/
function output(){

println("Write solution into file ’sol.txt’");
solFile = openWrite("sol.txt");
for [i in 1..n][l in 1..k]{

if (getValue(x[i][l]) == true)
println(solFile, i, " ", l);

}
}� �

20



Software ToolsOscaR-CBLS

[A constraint-based local search backend for MiniZinc Gustav Björdal, Jean-Noël
Monette, Pierre Flener Constraints (2015) 20:325–345]

Based on Constraint-based local search by Van Hentenryck and Michel.

Constraint classification:
I Implicit constraints: AllDifferent, GlobalCardinality with non-variable

cardinalities, LinearEquality with unit coefficients, Circuit and Subcircuit.

I One-way constraints defining invariants

I Soft constraints

Dependency graph:
one-way constraints are topologically sorted based on the following digraph:
each invariant is a node; there is an edge from a variable a to another
variable b if a defines b via a one-way constraint

21



Software Tools

First general local search solver with a backend for MiniZinc.
An example for the N-queens problem:

22



Software ToolsNeighborhoods
Neighborhoods are defined on independent variables only (roots of the
dependency graph). Invariants are not handled by neighborhoods.
General purpose neighborhoods:
Binary variables:

I flip
I swap

Integer variables:
I one-exchange
I reassignment of a independent

integer variable to another value
in its domain

Constraint specific neighborhoods
I AllDifferent: swap between the values of two variables; reassignment of a

variable to an unused value.
I GlobalCardinality: swap between the values of two variables;

reassignment of a variable so that all cardinalities are satisfied
I Circuit: removal of one vertex from the circuit and insertion at some

other point.
I Subcircuit: Circuit + removals without corresponding insertion;

insertions of previously removed vertices
I LinearEquality: the value of one variable is decreased by some amount

and the value of another variable is increased by the same amount
23



Software ToolsSearch Procedure

I randomised initial assignment.

I neighbourhoods do not return all possible moves to the search procedure
but are queried for a (random) best move

I Iterative improvement on general purpose neighborhoods: aims at
minimise the global violation. Choose a variable and reassign to it the
value that leads to the smallest global violation

I Tabu Search for satisfaction: objective function is neglected

I Tabu Search for optimization: ev. function: w1 · v +w2 · f , w1,w2 ∈ Z+.
I initially w1 = w2 = 1
I w1 is is increased if the global violation is positive (i.e., there remain

unsatisfied constraints) for a large number of iterations
I w2 is increased if the global violation is zero (i.e., all constraints are

satisfied) but no better solution is found for a large number of iterations

24


	Software Tools
	Constraint-Based Local Search with Comet™
	Local Solver


