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Software ToolsSoftware Tools

I Modeling languages
interpreted languages with a precise syntax and semantics

I Software libraries
collections of subprograms used to develop software

I Software frameworks
set of abstract classes and their interactions

I frozen spots (remain unchanged in any instantiation of the framework)
I hot spots (parts where programmers add their own code)
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Software ToolsSoftware Tools

No well established software tools for Local Search:

I the apparent simplicity of Local Search induces to build applications
from scratch.

I model and search are more interdependent than in CP and MILP: ie,
constraints must be relaxed and this is hard to automatize

I the freedom of problem characteristics that can be tackled

I crucial roles played by delta/incremental updates which are highly
problem dependent

I the development of Local Search is in part a craft,
beside engineering and science. Very little if nothing has general validity

I However some attempts: Comet, LocalSolver, OscaR-CBLS
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Software ToolsSoftware Tools

EasyLocal++ C++ Local Search
ParadisEO C++ Local Search, Evolutionary Algorithm
OpenTS Java Tabu Search
Comet Language
LocalSolver Modelling Language
Google OR Tools Libraries
OscaR-CBLS Modelling Language

EasyLocal++ http://tabu.diegm.uniud.it/EasyLocal++/
ParadisEO http://paradiseo.gforge.inria.fr
OpenTS http://www.coin-or.org/Ots
Comet http://dynadec.com/
LocalSolver http://www.localsolver.com/
Google OR Tools https://code.google.com/p/or-tools/
OscaR-CBLS http://oscarlib.bitbucket.org/cbls.html

5

http://tabu.diegm.uniud.it/EasyLocal++/
http://paradiseo.gforge.inria.fr
http://www.coin-or.org/Ots
http://dynadec.com/
http://www.localsolver.com/
https://code.google.com/p/or-tools/
http://oscarlib.bitbucket.org/cbls.html


Software ToolsOutline

1. Software Tools
Constraint-Based Local Search with CometTM

Local Solver

7



Software ToolsComet is

Unfortunately not Open Source

Developed by Pascal Van Hentenryck (Brown University), Laurent Michel
(University of Connecticut), now owned by Dynadec.

Not anymore in active development
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Software ToolsConstraint-Based Local Search is

I Model

I Incremental variables
I Invariants
I Differentiable objects

I Functions
I Constraints
I Constraint Systems

I Search

I Local Search
I Iterative Improvement
I Tabu Search
I Simulated Annealing
I Guided Local Search
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Software ToolsLocal Search Modelling Language

Enriched mathematical programming formulation:
I Boolean variables (0–1 programming)
I constriants (always satisfied) - decision between soft and hard left to user
I invariants
I objectives (lexicographics ordering)

Example (Bin-packing problem)

Input 3 items x , y , z of height 2,3,4 to pack into 2 piles A,B with B already
containing an item of height 5.
Task Minimize height of largest pile� �
xA <− bool(); yA <− bool(); zA <− bool();
xB <− bool(); yB <− bool(); zB <− bool();
constraint booleansum(xA, xB) = 1;
constraint booleansum(yA, yB) = 1;
constraint booleansum(zA, zB) = 1;
heightA <− sum(2xA, 3yA, 4zA);
heightB <− sum(2xB, 3yB, 4zB, 5);
objective <− max(heightA, heightB);
minimize objective;� �
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Software ToolsBlack-Box Local Search Solver

I initial solution: randomized greedy algorithm (constraints satisfied)
I search strategy (standard descent, simulated annealing, random restart

via multithreading)
I moves

specialized for constraints and feasibility
I incremental evaluation machinery

problem represented as a DAG: variables are roots, objectives leaves,
operators induce inner nodes
bredth-first search in DAG.
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Software ToolsLocal Solver

Example (Graph Coloring)� �
/∗ Declares the optimization model. ∗/
function model(){

x[1..n][1..k] <− bool();
y[1..k] <− bool();

// Assign color
for[i in 1..n]

constraint sum[l in 1..k](x[i][l]) == 1;

for[c in 1..m][l in 1..k]
constraint sum[i in 1..v[c][0]](x[v[c][i]][l]) <= 1;

y[l in 1..k] <− max[i in 1..n](x[i][l]);

// Clique constraint
obj <− sum[l in 1..k](y[l]);
minimize obj;

}� �
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Software ToolsLocal Solver

� �
/∗ Parameterizes the solver. ∗/
function param(){

if(lsTimeLimit == nil)
lsTimeLimit=600;

lsTimeBetweenDisplays = 10;
lsNbThreads = 4;
lsAnnealingLevel = 5;

}

/∗ Writes the solution in a file following the following format:
∗ each line contains a vertex number and its subset (1 for S, 0 for V−S) ∗/
function output(){

println("Write solution into file ’sol.txt’");
solFile = openWrite("sol.txt");
for [i in 1..n][l in 1..k]{

if (getValue(x[i][l]) == true)
println(solFile, i, " ", l);

}
}� �
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Software ToolsOscaR-CBLS

[A constraint-based local search backend for MiniZinc Gustav Björdal, Jean-Noël
Monette, Pierre Flener Constraints (2015) 20:325–345]

Based on Constraint-based local search by Van Hentenryck and Michel.

Constraint classification:
I Implicit constraints: AllDifferent, GlobalCardinality with non-variable

cardinalities, LinearEquality with unit coefficients, Circuit and Subcircuit.

I One-way constraints defining invariants

I Soft constraints

Dependency graph:
one-way constraints are topologically sorted based on the following digraph:
each invariant is a node; there is an edge from a variable a to another
variable b if a defines b via a one-way constraint
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Software Tools

First general local search solver with a backend for MiniZinc.
An example for the N-queens problem:
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Software ToolsNeighborhoods
Neighborhoods are defined on independent variables only (roots of the
dependency graph). Invariants are not handled by neighborhoods.
General purpose neighborhoods:
Binary variables:

I flip
I swap

Integer variables:
I one-exchange
I reassignment of a independent

integer variable to another value
in its domain

Constraint specific neighborhoods
I AllDifferent: swap between the values of two variables; reassignment of a

variable to an unused value.
I GlobalCardinality: swap between the values of two variables;

reassignment of a variable so that all cardinalities are satisfied
I Circuit: removal of one vertex from the circuit and insertion at some

other point.
I Subcircuit: Circuit + removals without corresponding insertion;

insertions of previously removed vertices
I LinearEquality: the value of one variable is decreased by some amount

and the value of another variable is increased by the same amount
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Software ToolsSearch Procedure

I randomised initial assignment.

I neighbourhoods do not return all possible moves to the search procedure
but are queried for a (random) best move

I Iterative improvement on general purpose neighborhoods: aims at
minimise the global violation. Choose a variable and reassign to it the
value that leads to the smallest global violation

I Tabu Search for satisfaction: objective function is neglected

I Tabu Search for optimization: ev. function: w1 · v +w2 · f , w1,w2 ∈ Z+.
I initially w1 = w2 = 1
I w1 is is increased if the global violation is positive (i.e., there remain

unsatisfied constraints) for a large number of iterations
I w2 is increased if the global violation is zero (i.e., all constraints are

satisfied) but no better solution is found for a large number of iterations
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