
DM841

Heuristics for Combinatorial Optimization

Very Large Scale Neighborhoods

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsCourse Overview

4 Combinatorial Optimization, Methods and Models

4 CH and LS: overview

4 Working Environment and Solver Systems

4 Methods for the Analysis of Experimental Results

4 Construction Heuristics

4 Local Search: Components, Basic Algorithms

4 Efficient Local Search: Incremental Updates and Neighborhood Pruning

4 Local Search: Neighborhoods and Search Landscape

4 Stochastic Local Search & Metaheuristics

6 Configuration Tools: F-race
I Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
Unrelated Parallel Machines, p-median, set covering, QAP, ...

2

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsVery Large Scale Neighborhoods

Small neighborhoods:

I might be short-sighted
I need many steps to traverse the search space

Large neighborhoods

I introduce large modifications to reach higher quality solutions
I allow to traverse the search space in few steps

Key idea: use very large neighborhoods that can be searched efficiently
(preferably in polynomial time) or are searched heuristically

3

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsVery large scale neighborhood search

1. define an exponentially large neighborhood
(though, O(n3) might already be large)

2. define a polynomial time search algorithm to search the neighborhood
(= solve the neighborhood search problem, NSP)

I exactly (leads to a best improvement strategy)

I heuristically (some improving moves might be missed)

4

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsExamples of VLSN Search

[Ahuja, Ergun, Orlin, Punnen, 2002]

I based on concatenation of simple moves
I Variable Depth Search (TSP, GP)
I Ejection Chains

I based on Dynamic Programming or Network Flows
I Dynasearch (ex. SMTWTP)
I Weighted Matching based neighborhoods (ex. TSP)
I Cyclic exchange neighborhood (ex. VRP)
I Shortest path

I based on polynomially solvable special cases of hard combinatorial
optimization problems

I Pyramidal tours
I Halin Graphs

5

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsOutline

1. Variable Depth Search

2. Ejection Chains

3. Dynasearch

4. Weighted Matching Neighborhoods

5. Cyclic Exchange Neighborhoods

6

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsVariable Depth Search

I Key idea: Complex steps in large neighborhoods = variable-length
sequences of simple steps in small neighborhood.

I Use various feasibility restrictions on selection of simple search steps to
limit time complexity of constructing complex steps.

I Perform Iterative Improvement w.r.t. complex steps.

Variable Depth Search (VDS):
determine initial candidate solution s
while s is not locally optimal do

t̂ := s
repeat

select best feasible neighbor t of t̂
if f(t) < f(t̂) then

t̂ := t
s := t̂

until construction of complex step has been completed;
7

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsGraph Partitioning

Graph Partitioning

Given: G = (V,E), weighted function ω : V → R, a positive number p:
0 < wi ≤ p, ∀i and a connectivity matrix C = [cij] ∈ R|V |×|V |.

Task: A k-partition of G, V1, V2, . . . , Vk:
⋃n
i=1 Vi = G such that:

I it is admissible, ie, |Vi| ≤ p for all i and

I it has minimum cost, ie, the sum of cij , i, j that belong to different
subsets is mimimal

8

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsVLSN for the Traveling Salesman Problem

I k-exchange heuristics
I 2-opt [Flood, 1956, Croes, 1958]
I 2.5-opt or 2H-opt
I Or-opt [Or, 1976]
I 3-opt [Block, 1958]
I k-opt [Lin 1965]

I complex neighborhoods
I Lin-Kernighan [Lin and Kernighan, 1965]
I Helsgaun’s Lin-Kernighan
I Dynasearch
I Ejection chains approach

9

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange Neighborhoods

The Lin-Kernighan (LK) Algorithm for the TSP (1)

I Complex search steps correspond to sequences
of 2-exchange steps and are constructed from
sequences of Hamiltonian paths

I δ-path: Hamiltonian path p + 1 edge connecting one end of p to interior
node of p

u

a)

v

u

b)

vw

10

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange Neighborhoods

Basic LK exchange step:

I Start with Hamiltonian path (u, . . . , v):

u

a)

v

I Obtain δ-path by adding an edge (v, w):

u

b)

vw

I Break cycle by removing edge (w, v′):

u

c)

vv'w

I Note: Hamiltonian path can be completed
into Hamiltonian cycle by adding edge (v′, u):

u

c)

vv'w

11

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange Neighborhoods

Construction of complex LK steps:

1. start with current candidate solution (Hamiltonian cycle) s;
set t∗ := s;
set p := s

2. obtain δ-path p′ by replacing one edge in p
3. consider Hamiltonian cycle t obtained from p by

(uniquely) defined edge exchange
4. if w(t) < w(t∗) then

set t∗ := t; p := p′; go to step 2
else accept t∗ as new current candidate solution s

Note: This can be interpreted as sequence of 1-exchange steps that alternate
between δ-paths and Hamiltonian cycles.

12

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange Neighborhoods

Mechanisms used by LK algorithm:

I Pruning exact rule: If a sequence of numbers has a positive sum, there is
a cyclic permutation of these numbers such that every partial sum is
positive.
è need to consider only gains whose partial sum remains positive

I Tabu restriction: Any edge that has been added cannot be removed and
any edge that has been removed cannot be added in the same LK step.
Note: This limits the number of simple steps in a complex LK step.

I Limited form of backtracking ensures that local minimum found by the
algorithm is optimal w.r.t. standard 3-exchange neighborhood

I (For further details, see original article)

[LKH Helsgaun’s implementation
http://www.akira.ruc.dk/~keld/research/LKH/ (99 pages report)]

13

http://www.akira.ruc.dk/~keld/research/LKH/

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsOutline

1. Variable Depth Search

2. Ejection Chains

3. Dynasearch

4. Weighted Matching Neighborhoods

5. Cyclic Exchange Neighborhoods

16

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsEjection Chains

I Attempt to use large neighborhoods without examining them
exhaustively

I Sequences of successive steps each influenced by the precedent and
determined by myopic choices

I Limited in length

I Local optimality in the large neighborhood is not guaranteed.

Example (on TSP):
successive 2-exchanges where each exchange involves one edge of the
previous exchange

Example (on GCP):
successive 1-exchanges: a vertex v1 changes color from ϕ(v1) = c1 to c2, in
turn forcing some vertex v2 with color ϕ(v2) = c2 to change to another color
c3 (which may be different or equal to c1) and again forcing a vertex v3 with
color ϕ(v3) = c3 to change to color c4.

17

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsOutline

1. Variable Depth Search

2. Ejection Chains

3. Dynasearch

4. Weighted Matching Neighborhoods

5. Cyclic Exchange Neighborhoods

18

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsDynasearch

I Iterative improvement method based on building complex search steps
from combinations of mutually independent search steps

I Mutually independent search steps do not interfere with each other wrt
effect on evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:

u1 ui ui+1 uj uj+1 uk uk+1 ul ul+1 un un+1

Therefore: Overall effect of complex search step = sum of effects of
constituting simple steps;
complex search steps maintain feasibility of candidate solutions.

I Key idea: Efficiently find optimal combination of mutually independent
simple search steps using Dynamic Programming.

19

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsDynasearch for SMTWTP

I two interchanges δjk and δlm are independent
if max{j, k} < min{l,m} or min{l, k} > max{l,m};

I the dynasearch neighborhood is obtained by a series of independent
interchanges;

I it has size 2n−1 − 1;

I but a best move can be found in O(n3) searched by dynamic
programming;

I it yields in average better results than the interchange neighborhood
alone.

20

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange Neighborhoods

21

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange Neighborhoods

I state (k, π)

I πk is the partial sequence at state (k, π) that has min
∑
wT

I πk is obtained from state (i, π){
appending job π(k) after π(i) i = k − 1

appending job π(k) and interchanging π(i+ 1) and π(k) 0 ≤ i < k − 1

I F (π0) = 0; F (π1) = wπ(1)
(
pπ(1) − dπ(1)

)+;
F (πk) = min

F (πk−1) + wπ(k)

(
Cπ(k) − dπ(k)

)+
,

min
1≤i<k−1

{F (πi) + wπ(k)
(
Cπ(i) + pπ(k) − dπ(k)

)+
+

+
∑k−1
j=i+2 wπ(j)

(
Cπ(j) + pπ(k) − pπ(i+1) − dπ(j)

)+
+

+wπ(i+1)

(
Cπ(k) − dπ(i+1)

)+}
22

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange Neighborhoods

I The best choice is computed by recursion in O(n3) and the optimal
series of interchanges for F (πn) is found by backtrack.

I Local search with dynasearch neighborhood starts from an initial
sequence, generated by ATC, and at each iteration applies the best
dynasearch move, until no improvement is possible (that is,
F (πtn) = F (π

(t−1)
n), for iteration t).

I Speedups:
I pruning with considerations on pπ(k) and pπ(i+1)

I maintainig a string of late, no late jobs
I ht largest index s.t. π(t−1)(k) = π(t−2)(k) for k = 1, . . . , ht then
F (π

(t−1)
k) = F (π

(t−2)
k) for k = 1, . . . , ht and at iter t no need to

consider i < ht.

23

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange Neighborhoods

Dynasearch, refinements:

I [Grosso et al. 2004] add insertion moves to interchanges.

I [Ergun and Orlin 2006] show that dynasearch neighborhood can be
searched in O(n2).

24

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange Neighborhoods

Performance:
I exact solution via branch and bound feasible up to 40 jobs

[Potts and Wassenhove, Oper. Res., 1985]

I exact solution via time-indexed integer programming formulation used to
lower bound in branch and bound solves instances of 100 jobs in 4-9
hours [Pan and Shi, Math. Progm., 2007]

I dynasearch: results reported for 100 jobs within a 0.005% gap from
optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

25

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsOutline

1. Variable Depth Search

2. Ejection Chains

3. Dynasearch

4. Weighted Matching Neighborhoods

5. Cyclic Exchange Neighborhoods

26

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsWeighted Matching Neighborhoods

I Key idea use basic polynomial time algorithms, example: weighted
matching in bipartied graphs, shortest path, minimum spanning tree.

I Neighborhood defined by finding a minimum cost matching on a
(bipartite) improvement graph

Example (TSP)
Neighborhood: Eject k nodes and reinsert them optimally

27

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsOutline

1. Variable Depth Search

2. Ejection Chains

3. Dynasearch

4. Weighted Matching Neighborhoods

5. Cyclic Exchange Neighborhoods

28

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsCyclic Exchange Neighborhoods

I Possible for problems where solution can be represented as form of
partitioning

I Definition of a partitioning problem:
Given: a set W of n elements, a collection T = {T1, T2, . . . , Tk} of
subsets of W , such that W = T1 ∪ . . . ∪ Tk and Ti ∩ Tj = ∅, and a cost
function c : T → R:
Task: Find another partition T ′ of W by means of single exchanges
between the sets such that

min

k∑
i=1

c(Ti)

I Cyclic exchange:

29

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange Neighborhoods

Neighborhood search

I Define an improvement graph

I Solve the relative

I Subset Disjoint Negative Cost Cycle Problem

I Subset Disjoint Minimum Cost Cycle Problem

30

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsExample (GCP)

Neighborhood Structures: Very Large Scale Neighborhood

One Exchange

Swap

Path Exchange

Cyclic Exchange

31

Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange NeighborhoodsExample (GCP)

Examination of the Very Large Scale Neighborhood

Exponential size but can be searched efficiently

Improvement Graph

A Subset Disjoint Negative Cost Cycle Problem in the Improvement Graph
can be solved by dynamic programming in O(|V |22k|D′|).
Yet, heuristic rules can be adopted to reduce the complexity to O(|V ′|2)

32

Procedure SDNCC(G′(V ′, D′))
Let P all negative cost paths of length 1, Mark all paths in P as untreated
Initialize the best cycle q∗ = () and c∗ = 0
for all p ∈ P do

if (e(p), s(p)) ∈ D′ and c(p) + c(e(p), s(p)) < c∗ then
q∗ = the cycle obtained by closing p and c∗ = c(q∗)

while P 6= ∅ do
Let P̂ = P be the set of untreated paths
P = ∅
while ∃ p ∈ P̂ untreated do

Select some untreated path p ∈ P̂ and mark it as treated
for all (e(p), j) ∈ D′ s.t. wϕ(vj)(p) = 0 and c(p) + c(e(p), j) < 0 do

Add the extended path (s(p), . . . , e(p), j) to P as untreated
if (j, s(p)) ∈ D′ and c(p) + c(e(p), j) + c(j, s(p)) < c∗ then

q∗ = the cycle obtained closing the path (s(p), . . . , e(p), j)
c∗ = c(q∗)

for all p′ ∈ P subject to w(p′) = w(p), s(p′) = s(p), e(p′) = e(p) do
Remove from P the path of higher cost between p and p′

return a minimal negative cost cycle q∗ of cost c∗

	Variable Depth Search
	Ejection Chains
	Dynasearch
	Weighted Matching Neighborhoods
	Cyclic Exchange Neighborhoods

