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4 Stochastic Local Search & Metaheuristics

6 Configuration Tools: F-race
I Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
Unrelated Parallel Machines, p-median, set covering, QAP, ...
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Small neighborhoods:

I might be short-sighted
I need many steps to traverse the search space

Large neighborhoods

I introduce large modifications to reach higher quality solutions
I allow to traverse the search space in few steps

Key idea: use very large neighborhoods that can be searched efficiently
(preferably in polynomial time) or are searched heuristically
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1. define an exponentially large neighborhood
(though, O(n3) might already be large)

2. define a polynomial time search algorithm to search the neighborhood
(= solve the neighborhood search problem, NSP)

I exactly (leads to a best improvement strategy)

I heuristically (some improving moves might be missed)
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[Ahuja, Ergun, Orlin, Punnen, 2002]

I based on concatenation of simple moves
I Variable Depth Search (TSP, GP)
I Ejection Chains

I based on Dynamic Programming or Network Flows
I Dynasearch (ex. SMTWTP)
I Weighted Matching based neighborhoods (ex. TSP)
I Cyclic exchange neighborhood (ex. VRP)
I Shortest path

I based on polynomially solvable special cases of hard combinatorial
optimization problems

I Pyramidal tours
I Halin Graphs
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1. Variable Depth Search

2. Ejection Chains
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4. Weighted Matching Neighborhoods
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I Key idea: Complex steps in large neighborhoods = variable-length
sequences of simple steps in small neighborhood.

I Use various feasibility restrictions on selection of simple search steps to
limit time complexity of constructing complex steps.

I Perform Iterative Improvement w.r.t. complex steps.

Variable Depth Search (VDS):
determine initial candidate solution s
while s is not locally optimal do

t̂ := s
repeat

select best feasible neighbor t of t̂
if f(t) < f(t̂) then

t̂ := t
s := t̂

until construction of complex step has been completed;
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Graph Partitioning

Given: G = (V,E), weighted function ω : V → R, a positive number p:
0 < wi ≤ p, ∀i and a connectivity matrix C = [cij ] ∈ R|V |×|V |.

Task: A k-partition of G, V1, V2, . . . , Vk:
⋃n
i=1 Vi = G such that:

I it is admissible, ie, |Vi| ≤ p for all i and

I it has minimum cost, ie, the sum of cij , i, j that belong to different
subsets is mimimal
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I k-exchange heuristics
I 2-opt [Flood, 1956, Croes, 1958]
I 2.5-opt or 2H-opt
I Or-opt [Or, 1976]
I 3-opt [Block, 1958]
I k-opt [Lin 1965]

I complex neighborhoods
I Lin-Kernighan [Lin and Kernighan, 1965]
I Helsgaun’s Lin-Kernighan
I Dynasearch
I Ejection chains approach
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The Lin-Kernighan (LK) Algorithm for the TSP (1)

I Complex search steps correspond to sequences
of 2-exchange steps and are constructed from
sequences of Hamiltonian paths

I δ-path: Hamiltonian path p + 1 edge connecting one end of p to interior
node of p

u

a)

v

u

b)

vw
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Basic LK exchange step:

I Start with Hamiltonian path (u, . . . , v):

u

a)

v

I Obtain δ-path by adding an edge (v, w):

u

b)

vw

I Break cycle by removing edge (w, v′):

u

c)

vv'w

I Note: Hamiltonian path can be completed
into Hamiltonian cycle by adding edge (v′, u):

u

c)

vv'w
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Construction of complex LK steps:

1. start with current candidate solution (Hamiltonian cycle) s;
set t∗ := s;
set p := s

2. obtain δ-path p′ by replacing one edge in p
3. consider Hamiltonian cycle t obtained from p by

(uniquely) defined edge exchange
4. if w(t) < w(t∗) then

set t∗ := t; p := p′; go to step 2
else accept t∗ as new current candidate solution s

Note: This can be interpreted as sequence of 1-exchange steps that alternate
between δ-paths and Hamiltonian cycles.

12



Variable Depth Search
Ejection Chains
Dynasearch
Weighted Matching Neighborhoods
Cyclic Exchange Neighborhoods

Mechanisms used by LK algorithm:

I Pruning exact rule: If a sequence of numbers has a positive sum, there is
a cyclic permutation of these numbers such that every partial sum is
positive.
è need to consider only gains whose partial sum remains positive

I Tabu restriction: Any edge that has been added cannot be removed and
any edge that has been removed cannot be added in the same LK step.
Note: This limits the number of simple steps in a complex LK step.

I Limited form of backtracking ensures that local minimum found by the
algorithm is optimal w.r.t. standard 3-exchange neighborhood

I (For further details, see original article)

[LKH Helsgaun’s implementation
http://www.akira.ruc.dk/~keld/research/LKH/ (99 pages report)]
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1. Variable Depth Search
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I Attempt to use large neighborhoods without examining them
exhaustively

I Sequences of successive steps each influenced by the precedent and
determined by myopic choices

I Limited in length

I Local optimality in the large neighborhood is not guaranteed.

Example (on TSP):
successive 2-exchanges where each exchange involves one edge of the
previous exchange

Example (on GCP):
successive 1-exchanges: a vertex v1 changes color from ϕ(v1) = c1 to c2, in
turn forcing some vertex v2 with color ϕ(v2) = c2 to change to another color
c3 (which may be different or equal to c1) and again forcing a vertex v3 with
color ϕ(v3) = c3 to change to color c4.
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I Iterative improvement method based on building complex search steps
from combinations of mutually independent search steps

I Mutually independent search steps do not interfere with each other wrt
effect on evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:

u1 ui ui+1 uj uj+1 uk uk+1 ul ul+1 un un+1

Therefore: Overall effect of complex search step = sum of effects of
constituting simple steps;
complex search steps maintain feasibility of candidate solutions.

I Key idea: Efficiently find optimal combination of mutually independent
simple search steps using Dynamic Programming.
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I two interchanges δjk and δlm are independent
if max{j, k} < min{l,m} or min{l, k} > max{l,m};

I the dynasearch neighborhood is obtained by a series of independent
interchanges;

I it has size 2n−1 − 1;

I but a best move can be found in O(n3) searched by dynamic
programming;

I it yields in average better results than the interchange neighborhood
alone.
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I state (k, π)

I πk is the partial sequence at state (k, π) that has min
∑
wT

I πk is obtained from state (i, π){
appending job π(k) after π(i) i = k − 1

appending job π(k) and interchanging π(i+ 1) and π(k) 0 ≤ i < k − 1

I F (π0) = 0; F (π1) = wπ(1)
(
pπ(1) − dπ(1)

)+;
F (πk) = min


F (πk−1) + wπ(k)

(
Cπ(k) − dπ(k)

)+
,

min
1≤i<k−1

{F (πi) + wπ(k)
(
Cπ(i) + pπ(k) − dπ(k)

)+
+

+
∑k−1
j=i+2 wπ(j)

(
Cπ(j) + pπ(k) − pπ(i+1) − dπ(j)

)+
+

+wπ(i+1)

(
Cπ(k) − dπ(i+1)

)+}
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I The best choice is computed by recursion in O(n3) and the optimal
series of interchanges for F (πn) is found by backtrack.

I Local search with dynasearch neighborhood starts from an initial
sequence, generated by ATC, and at each iteration applies the best
dynasearch move, until no improvement is possible (that is,
F (πtn) = F (π

(t−1)
n ), for iteration t).

I Speedups:
I pruning with considerations on pπ(k) and pπ(i+1)

I maintainig a string of late, no late jobs
I ht largest index s.t. π(t−1)(k) = π(t−2)(k) for k = 1, . . . , ht then
F (π

(t−1)
k ) = F (π

(t−2)
k ) for k = 1, . . . , ht and at iter t no need to

consider i < ht.
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Dynasearch, refinements:

I [Grosso et al. 2004] add insertion moves to interchanges.

I [Ergun and Orlin 2006] show that dynasearch neighborhood can be
searched in O(n2).
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Performance:
I exact solution via branch and bound feasible up to 40 jobs

[Potts and Wassenhove, Oper. Res., 1985]

I exact solution via time-indexed integer programming formulation used to
lower bound in branch and bound solves instances of 100 jobs in 4-9
hours [Pan and Shi, Math. Progm., 2007]

I dynasearch: results reported for 100 jobs within a 0.005% gap from
optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]
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I Key idea use basic polynomial time algorithms, example: weighted
matching in bipartied graphs, shortest path, minimum spanning tree.

I Neighborhood defined by finding a minimum cost matching on a
(bipartite) improvement graph

Example (TSP)
Neighborhood: Eject k nodes and reinsert them optimally
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I Possible for problems where solution can be represented as form of
partitioning

I Definition of a partitioning problem:
Given: a set W of n elements, a collection T = {T1, T2, . . . , Tk} of
subsets of W , such that W = T1 ∪ . . . ∪ Tk and Ti ∩ Tj = ∅, and a cost
function c : T → R:
Task: Find another partition T ′ of W by means of single exchanges
between the sets such that

min

k∑
i=1

c(Ti)

I Cyclic exchange:
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Neighborhood search

I Define an improvement graph

I Solve the relative

I Subset Disjoint Negative Cost Cycle Problem

I Subset Disjoint Minimum Cost Cycle Problem
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Neighborhood Structures: Very Large Scale Neighborhood

One Exchange

Swap

Path Exchange

Cyclic Exchange
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Examination of the Very Large Scale Neighborhood

Exponential size but can be searched efficiently

Improvement Graph

A Subset Disjoint Negative Cost Cycle Problem in the Improvement Graph
can be solved by dynamic programming in O(|V |22k|D′|).
Yet, heuristic rules can be adopted to reduce the complexity to O(|V ′|2)
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Procedure SDNCC(G′(V ′, D′))
Let P all negative cost paths of length 1, Mark all paths in P as untreated
Initialize the best cycle q∗ = () and c∗ = 0
for all p ∈ P do

if (e(p), s(p)) ∈ D′ and c(p) + c(e(p), s(p)) < c∗ then
q∗ = the cycle obtained by closing p and c∗ = c(q∗)

while P 6= ∅ do
Let P̂ = P be the set of untreated paths
P = ∅
while ∃ p ∈ P̂ untreated do

Select some untreated path p ∈ P̂ and mark it as treated
for all (e(p), j) ∈ D′ s.t. wϕ(vj)(p) = 0 and c(p) + c(e(p), j) < 0 do

Add the extended path (s(p), . . . , e(p), j) to P as untreated
if (j, s(p)) ∈ D′ and c(p) + c(e(p), j) + c(j, s(p)) < c∗ then

q∗ = the cycle obtained closing the path (s(p), . . . , e(p), j)
c∗ = c(q∗)

for all p′ ∈ P subject to w(p′) = w(p), s(p′) = s(p), e(p′) = e(p) do
Remove from P the path of higher cost between p and p′

return a minimal negative cost cycle q∗ of cost c∗
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