DM841 (10 ECTS - autumn semester)

Heuristics and Constraint Programming for Discrete Optimization

[Heuristikker og Constraint Programmering for Diskret Optimering] (Gamle DM811 + DM826)

Marco Chiarandini lektor, IMADA www.imada.sdu.dk/~marco/DM841

Problems with Constraints

Social Golfer Problem

- ▶ 9 golfers: 1, 2, 3, 4, 5, 6, 7, 8, 9
- wish to play in groups of 3 players in 4 days
- such that no golfer plays in the same group with any other golfer more than just once.

Is it possible?

Problems with Constraints

Social Golfer Problem

- ▶ 9 golfers: 1, 2, 3, 4, 5, 6, 7, 8, 9
- wish to play in groups of 3 players in 4 days
- ▶ such that no golfer plays in the same group with any other golfer more than just once.

Is it possible?

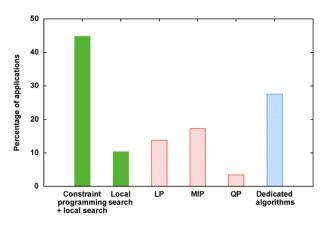
	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

Solution Paradigms

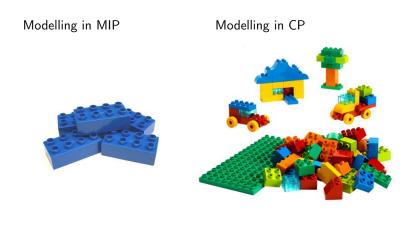
- ▶ Dedicated algorithms
- ► Integer Programming (DM545/DM554)
- ► Constraint Programming:

- ► Local Search & Metaheuristics
- ▶ Others (SAT, etc)

Solution Paradigms


- ► Dedicated algorithms
- ► Integer Programming (DM545/DM554)
- ► Constraint Programming:

```
representation (language) + reasoning (search + propagation)
```


- ► Local Search & Metaheuristics
- ► Others (SAT, etc)

Applications

Distribution of technology used at Google for optimization applications developed by the operations research team

[Slide presented by Laurent Perron on OR-Tools at CP2013]

Modeling

integer variables:

 $X_{p,g}$ variable whose values are from the domain $\{1,2,3\}$

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Modeling

integer variables:

 $X_{p,g}$ variable whose values are from the domain $\{1,2,3\}$

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}

- each group has exactly groupSize players
- each pair of players only meets once

Modeling

integer variables:

 $X_{p,q}$ variable whose values are from $X_{q,d}$ variable whose values are the domain $\{1, 2, 3\}$

set variables:

subsets of $\{1, 2, ..., 9\}$

Groups

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Golfers

	Group 1	Group 2	Group 3
Day 0	012		
Day 1			
Day 2			
Day 3			

- each group has exactly groupSize players
- each pair of players only meets once

Modeling

integer variables:

 $X_{p,q}$ variable whose values are from $X_{q,d}$ variable whose values are the domain $\{1, 2, 3\}$

set variables:

subsets of $\{1, 2, ..., 9\}$

Groups

Day 0	Day 1	Day 2	Day 3
1	{1,2,3}	{1,2,3}	{1,2,3}
1	{1,2,3}	{1,2,3}	{1,2,3}
1	{1,2,3}	{1,2,3}	{1,2,3}
{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
	1 1 (2,3) (2,3) (2,3) (2,3) (2,3)	1 (1,2,3) 1 (1,2,3) 1 (1,2,3) (2,3) (1,2,3) (2,3) (1,2,3) (2,3) (1,2,3) (2,3) (1,2,3) (2,3) (1,2,3)	1 (1,2,3) (1,2,3) 1 (1,2,3) (1,2,3) 2,3) (1,2,3) (1,2,3) (2,3) (1,2,3) (1,2,3) (2,3) (1,2,3) (1,2,3) (2,3) (1,2,3) (1,2,3) (3,3) (1,2,3) (1,2,3) (3,4) (1,2,3) (1,2,3)

Golfers

	Group 1	Group 2	Group 3
Day 0	012		
Day 1			
Day 2			
Day 3			

- each group has exactly groupSize players
- each pair of players only meets once
- ► In each day, groups must be disjoint and contain all players
- at most one player overlaps between groups

Model with Integer Variables

```
players = 9:
groupSize = 3;
davs = 4;
groups = players/groupSize;
\# === Variables ==========
assign = m.intvars(players * days, 0, groups-1)
schedule = Matrix(players, days, assign)
\# === Constraints =========
# C1: Each group has exactly groupSize players
for d in range(days):
   m.count(schedule.col(d), [groupSize, groupSize, groupSize]);
# C2: Each pair of players only meets once
p_pairs = [(a,b) for a in range(players) for b in range(players) if p1<p2]
d_pairs = [(a,b) for a in range(days) for b in range(days) if d1<d2]
for (p1,p2) in p_pairs:
   for (d1,d2) in d_pairs:
       b1 = m.boolvar()
       b2 = m.boolvar()
       m.rel(assign(p1,d1), IRT_EQ, assign(p2,d1), b1)
       m.rel(assign(p1,d2), IRT_EQ, assign(p2,d2), b2)
       m.linear([b1,b2], IRT_LQ, 1)
m.branch(assign, INT_VAL_MIN_MIN, INT_VAL_SPLIT_MIN)
```

Model with Set Variables

```
p = 9 # number of players
g = 3 # number of groups
w = 4 # number of days
s = p/g # size of groups
# === Variables ==========
groups = m.setvars(g*w, intset(), 0, p-1, s, s)
schedule = Matrix(g, w, groups)
allPlayers = m.setvar(0, p-1, 0, p)
\# === Constraints =========
# In each day, groups must be disjoint and contain all players
for i in range(g):
z1 = m.setvars(g, intset(), 0, p-1, 0, p)
m.rel(SOT_DUNION, schedule[i].row(i), z1[i])
m.rel(z1[i], SRT EQ, allPlayers)
# at most one player overlaps between groups
for i,j in itertools.combinations(range(g*w), 2):
   z2 = m.setvar(intset(), 0, p-1, 0, p))
   m.rel(groups[i], SOT_INTER, groups[j], SRT_EQ, z2)
   m.cardinality(z2, 0, 1)
m.branch(groups, SET VAR MIN MIN, SET VAL MIN INC);
```

Solution: Assign and Propagate

Golfers

	Group 1	Group 2	Group 3
Day 0	012		
Day 1			
Day 2			
Day 3			

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Golfers

	Group 1	Group 2	Group 3
Day 0	012	3 4 5	
Day 1			
Day 2			
Day 3			

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{3}	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Golfers

	Group 1	Group 2	Group 3
Day 0	012	3 4 5	6 7 8
Day 1			
Day 2			
Day 3			

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	3	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Golfers

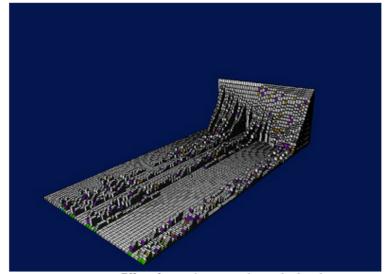
	Group 1	Group 2	Group 3
Day 0	012	3 4 5	678
Day 1	0		
Day 2			
Day 3			

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	1	{1,2,3}	{1,2,3}
Golfer 1	1	{2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{2,3}	{1,2,3}	{1,2,3}
Golfer 3	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	3	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Golfers

	Group 1	Group 2	Group 3
Day 0	012	3 4 5	678
Day 1	0	1	
Day 2			
Day 3			


	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	1	{1,2,3}	{1,2,3}
Golfer 1	1	2	{1,2,3}	{1,2,3}
Golfer 2	1	{3}	{1,2,3}	{1,2,3}
Golfer 3	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	3	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Golfers

	Group 1	Group 2	Group 3
Day 0	012	3 4 5	678
Day 1	036	147	258
Day 2	0 4 8	156	237
Day 3	057	138	2 4 6

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	1		
Golfer 1	1	2		
Golfer 2	1	{3}		
Golfer 3	2			
Golfer 4	2			
Golfer 5	2			
Golfer 6	3			
Golfer 7	3			
Golfer 8	3			

Effect of constraint propagation on the domains of variables during search in a placement problem.

Local Search

Solution: Trial and Error

	Group 1	Group 2	Group 3
Day 0	012	3 4 5	6 7 8
Day 1	0 4 6	1 3 7	2 5 8
Day 2	0 4 8	156	2 3 7
Day 3	0 5 7	138	2 4 6

Heuristic algorithms: compute, efficiently, good solutions to a problem (without caring for theoretical guarantees on running time and approximation quality).

Contents: Constraint Programming

- ► Modelling and Applications Integer variables, set variables, float variables, constraints
- Principles Consistency levels
- ► Filtering Algorithms
 Alldifferent, cardinality, regular expressions, etc.
- Search: Backtracking, Strategies
- Symmetry Breaking
- Restart Techniques
- Programming Gecode (C++)

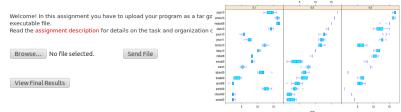
Contents: Heuristics

- Construction Heuristics
- ► Local Search
- Metaheuristics
 - Simulated Annealing
 - ► Iterated Local Search
 - ► Tabu Search
 - Variable Neighborhood Search
 - Evolutionary Algorithms
 - Ant Colony Optimization
- ▶ Programming EasyLocal (C++)

Aims & Contents

- modeling problems with constraint programming
- design heuristic algorithms
- ► implement the algorithms
- assess the programs
- describe with appropriate language
- ▶ look at different problems

Course Formalities


Prerequisites:	✓ Algorithms and data structures (DM507)✓ Programming (DM502, DM503, DM550)
Credits:	10 ECTS
Language:	English and Danish
Classes:	intro phase $2h \times 24$; training phase $2h \times 10$
Material:	slides + articles + lecture notes + starting code

Assessment (10 ECTS)

5 obligatory assignments:

- individual
- ▶ deliverables: program + short written report
- graded with external censor, final grade given by weighted average

DM841 (10 ECTS - autumn semester)

Heuristics and Constraint Programming for Discrete Optimization

[Heuristikker og Constraint Programmering for Diskret Optimering] (Gamle DM811 + DM826)

Marco Chiarandini lektor, IMADA www.imada.sdu.dk/~marco/DM841