
D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

DM841 (10 ECTS - autumn semester)

Heuristics and Constraint Programming
for Discrete Optimization

[Heuristikker og Constraint Programmering for
Diskret Optimering] (Gamle DM811 + DM826)

Marco Chiarandini
lektor, IMADA
www.imada.sdu.dk/~marco/DM841

www.imada.sdu.dk/~marco/DM841

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Problems with Constraints

Social Golfer Problem
I 9 golfers: 1, 2, 3, 4, 5, 6, 7, 8, 9
I wish to play in groups of 3 players in 4 days
I such that no golfer plays in the same group with any other

golfer more than just once.

Is it possible?

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Problems with Constraints

Social Golfer Problem
I 9 golfers: 1, 2, 3, 4, 5, 6, 7, 8, 9
I wish to play in groups of 3 players in 4 days
I such that no golfer plays in the same group with any other

golfer more than just once.

Is it possible?

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Solution Paradigms

I Dedicated algorithms

I Integer Programming (DM545/DM554)

I Constraint Programming:

representation (language) + reasoning (search + propagation)

I Local Search & Metaheuristics

I Others (SAT, etc)

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Solution Paradigms

I Dedicated algorithms

I Integer Programming (DM545/DM554)

I Constraint Programming:

representation (language) + reasoning (search + propagation)

I Local Search & Metaheuristics

I Others (SAT, etc)

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Applications

Distribution of technology used at Google for optimization
applications developed by the operations research team

[Slide presented by Laurent Perron on OR-Tools at CP2013]

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming

Modelling in MIP Modelling in CP

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming
Modeling

integer variables:
Xp,g variable whose values are from
the domain {1, 2, 3}

I each group has exactly
groupSize players

I each pair of players only meets
once

set variables:
Xg,d variable whose values are
subsets of {1, 2, ..., 9}

I In each day, groups must be
disjoint and contain all players

I at most one player overlaps
between groups

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming
Modeling

integer variables:
Xp,g variable whose values are from
the domain {1, 2, 3}

I each group has exactly
groupSize players

I each pair of players only meets
once

set variables:
Xg,d variable whose values are
subsets of {1, 2, ..., 9}

I In each day, groups must be
disjoint and contain all players

I at most one player overlaps
between groups

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming
Modeling

integer variables:
Xp,g variable whose values are from
the domain {1, 2, 3}

I each group has exactly
groupSize players

I each pair of players only meets
once

set variables:
Xg,d variable whose values are
subsets of {1, 2, ..., 9}

I In each day, groups must be
disjoint and contain all players

I at most one player overlaps
between groups

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming
Modeling

integer variables:
Xp,g variable whose values are from
the domain {1, 2, 3}

I each group has exactly
groupSize players

I each pair of players only meets
once

set variables:
Xg,d variable whose values are
subsets of {1, 2, ..., 9}

I In each day, groups must be
disjoint and contain all players

I at most one player overlaps
between groups

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming
Model with Integer Variables� �

players = 9;
groupSize = 3;
days = 4;

groups = players/groupSize;

=== Variables ==============
assign = m.intvars(players * days, 0, groups-1)
schedule = Matrix(players, days, assign)

=== Constraints ============
C1: Each group has exactly groupSize players
for d in range(days):

m.count(schedule.col(d), [groupSize, groupSize, groupSize]);

C2: Each pair of players only meets once
p_pairs = [(a,b) for a in range(players) for b in range(players) if p1<p2]
d_pairs = [(a,b) for a in range(days) for b in range(days) if d1<d2]
for (p1,p2) in p_pairs:

for (d1,d2) in d_pairs:
b1 = m.boolvar()
b2 = m.boolvar()
m.rel(assign(p1,d1), IRT_EQ, assign(p2,d1), b1)
m.rel(assign(p1,d2), IRT_EQ, assign(p2,d2), b2)
m.linear([b1,b2], IRT_LQ, 1)

m.branch(assign, INT_VAL_MIN_MIN, INT_VAL_SPLIT_MIN)� �

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming
Model with Set Variables� �

p = 9 # number of players
g = 3 # number of groups
w = 4 # number of days

s = p/g # size of groups

=== Variables ==============
groups = m.setvars(g*w, intset(), 0, p-1, s, s)
schedule = Matrix(g, w, groups)
allPlayers = m.setvar(0, p-1, 0, p)

=== Constraints ============
In each day, groups must be disjoint and contain all players
for i in range(g):
z1 = m.setvars(g, intset(), 0, p-1, 0, p)
m.rel(SOT_DUNION, schedule[i].row(i), z1[i])
m.rel(z1[i], SRT_EQ, allPlayers)

at most one player overlaps between groups
for i,j in itertools.combinations(range(g*w), 2):

z2 = m.setvar(intset(), 0, p-1, 0, p))
m.rel(groups[i], SOT_INTER, groups[j], SRT_EQ, z2)
m.cardinality(z2, 0, 1)

m.branch(groups, SET_VAR_MIN_MIN, SET_VAL_MIN_INC);� �

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming
Solution: Assign and Propagate

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming
Solution: Assign and Propagate

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming
Solution: Assign and Propagate

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming
Solution: Assign and Propagate

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming
Solution: Assign and Propagate

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Constraint Programming
Solution: Assign and Propagate

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Local Search
Solution: Trial and Error

Heuristic algorithms: compute, efficiently, good solutions to a
problem (without caring for theoretical guarantees on running time
and approximation quality).

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Contents: Constraint Programming

I Modelling and Applications
Integer variables, set variables, float variables, constraints

I Principles Consistency levels

I Filtering Algorithms
Alldifferent, cardinality, regular expressions, etc.

I Search:
Backtracking, Strategies

I Symmetry Breaking

I Restart Techniques

I Programming
Gecode (C++)

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Contents: Heuristics

I Construction Heuristics

I Local Search

I Metaheuristics
I Simulated Annealing
I Iterated Local Search
I Tabu Search
I Variable Neighborhood Search
I Evolutionary Algorithms
I Ant Colony Optimization

I Programming
EasyLocal (C++)

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Aims & Contents

I modeling problems with constraint programming
I design heuristic algorithms
I implement the algorithms
I assess the programs
I describe with appropriate language
I look at different problems

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Course Formalities

Prerequisites: D Algorithms and data structures (DM507)

D Programming (DM502, DM503, DM550)

Credits: 10 ECTS

Language: English and Danish

Classes: intro phase 2h× 24; training phase 2h× 10

Material: slides + articles + lecture notes + starting code

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

Assessment (10 ECTS)

5 obligatory assignments:

I individual
I deliverables: program + short written report
I graded with external censor,

final grade given by weighted average

D
M
84
1
–
D
is
cr
et
e
O
pt
im

iz
at
io
n

DM841 (10 ECTS - autumn semester)

Heuristics and Constraint Programming
for Discrete Optimization

[Heuristikker og Constraint Programmering for
Diskret Optimering] (Gamle DM811 + DM826)

Marco Chiarandini
lektor, IMADA
www.imada.sdu.dk/~marco/DM841

www.imada.sdu.dk/~marco/DM841

