FF505 Computational Science

Matrix Calculus

Marco Chiarandini (marco@imada.sdu.dk)

Department of Mathematics and Computer Science (IMADA) University of Southern Denmark

Resume

- MATLAB, numerical computing vs symbolic computing
- MATLAB Desktop
- Script files
- 1D and 2D arrays
- Plot
- Interacting with matlab
- Matrix vs array operations
- Car market assignment

Other topics:

- matrices and vectors
- solving linear systems
- determinants
- linear transformation
- eigenvalues and eigenvectors
- diagonalization?

Outline

1. Vectors and Matrices

Linear Algebra Array Operations

Creating Matrices

eye(4) % identity matrix
zeros(4) % matrix of zero elements
ones(4) % matrix of one elements

A=rand(8) triu(A) % upper triangular matrix tril(A) diag(A) % diagonal

```
>> [ eye(2), ones(2,3); zeros(2),
    [1:3;3:-1:1] ]
ans =
    1 0 1 1 1
    0 1 1 1 1
    0 0 1 2 3
    0 0 3 2 1
```

Can you create this matrix in one line of code?

-5	0	0	0	0	0	0	1	1	1	1
0	-4	0	0	0	0	0	0	1	1	1
0	0	-3	0	0	0	0	0	0	1	1
0	0	0	-2	0	0	0	0	0	0	1
0	0	0	0	-1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	2	0	0	0
1	1	0	0	0	0	0	0	3	0	0
1	1	1	0	0	0	0	0	0	4	0
1	1	1	1	0	0	0	0	0	0	5

Reshaping

```
%% reshape and replication
A = magic(3) % magic square
A = [A [0;1;2]]
reshape(A,[4 3]) % columnwise
reshape(A,[2 6])
v = [100;0;0]
A+v
A + repmat(v,[1 4])
```

Outline

1. Vectors and Matrices Linear Algebra Array Operations

Dot and Cross Products

dot(A,B) inner or scalar product: computes the projection of a vector on the other. eg. dot(Fr,r) computes component of force F along direction r

v=1:10 u=11:20 u*v' % inner or scalar product ui=u+i ui' v*ui' % inner product of C^n norm(v,2) sqrt(v*v')

cross(A,B) cross product: eg: moment $\mathbf{M} = \mathbf{r} \times \mathbf{F}$

Electrical Networks

$$\begin{array}{ll} i_1 - i_2 + i_3 = 0 & {\rm node} \; {\rm A} \\ -i_1 + i_2 - i_3 = 0 & {\rm node} \; {\rm B} \\ & 4i_1 + 2i_2 = 8 & {\rm top} \; {\rm loop} \\ & 2i_2 + 5i_3 = 9 & {\rm bottom} \; {\rm loop} \end{array}$$

We want to determine the amount of current present in each branch.

Kirchoff's Laws

- At every node, the sum of the incoming currents equals the sum of the outgoing currents
- Around every closed loop, the algebraic sum of the voltage gains must equal the algebraic sum of the voltage drops.

Voltage drops V (by Ohm's law)

$$V = iR$$

Matrix Multiplication

$$i_1 - i_2 + i_3 = 0$$

$$-i_1 + i_2 - i_3 = 0$$

$$4i_1 + 2i_2 = 8$$

$$2i_2 + 5i_3 = 9$$

node A node B top loop bottom loop

$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 4 & 2 & 0 \\ 0 & 2 & 5 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 8 \\ 9 \end{bmatrix}$$

$$A\mathbf{x} = \mathbf{b}$$

Chemical Equations

$x_1 \mathrm{CO}_2 + x_2 \mathrm{H}_2 \mathrm{O} \rightarrow x_3 \mathrm{O}_2 + x_4 \mathrm{C}_6 \mathrm{H}_{12} \mathrm{O}_6$

To balance the equation, we must choose x_1, x_2, x_3, x_4 so that the numbers of carbon, hydrogen, and oxygen atoms are the same on each side of the equation.

$x_1 = 6x_4$	carbon atoms
$2x_1 + x_2 = 2x_3 + 6x_4$	oxygen
$2x_2 = 12x_4$	hydrogen

Matrix Multiplication

$$x_1 = 6x_4$$

$$2x_1 + x_2 = 2x_3 + 6x_4$$

$$2x_2 = 12x_4$$

$$\begin{bmatrix} 1 & 0 & 0 & -6 \\ 2 & 1 & 2 & 6 \\ 0 & 2 & 0 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- -

$$A\mathbf{x} = \mathbf{0}$$

Matrix-Matrix Multiplication

In the product of two matrices A * B,

the number of columns in A must equal the number of rows in B.

The product AB has the same number of rows as A and the same number of columns as B. For example

Exercise: create a small example to show that in general, $AB \neq BA$.

Eigenvalues and eigenvectors:

```
A = ones(6)
trace(A)
A = A - tril(A)-triu(A,2)
eig(A)
diag(ones(3,1),-1)
[V,D]=eig(diag(1:4))
rank(A) % rank of A
orth(A) % orthonormal basis
```

Visualizing Eigenvalues

A=[5/4,0;0,3/4]; eigshow(A) %effect of operator A on unit verctor

Outline

1. Vectors and Matrices Linear Algebra Array Operations

Matrix Operations

```
%% matrix operations
A * C % matrix multiplication
B = [5 6; 7 8; 9 10] * 100 % same dims as A
A .* B % element-wise multiplcation
\% A .* C or A * B gives error – wrong dimensions
A .^ 2
1./B
log(B) % functions like this operate element-wise on vecs or matrices
exp(B) % overflow
abs(B)
v = [-3:3] \% = [-3 - 2 - 1 \ 0 \ 1 \ 2 \ 3]
-v \% - 1 * v
v + ones(1,length(v))
\% v + 1 \% same
A' % (conjuate) transpose
```

Matrix and Array Operations

- Matrix operations follow the rules of linear algebra (not compatible with multidimensional arrays).
- Array operations execute element-by-element operations and support multidimensional arrays.
- The period character (.) distinguishes the array operations from the matrix operations.
- Array operations work on corresponding elements of arrays with equal dimensions
- scalar expansion: scalars are expanded into an array of the same size as the other input

Matrix vs Array Operations

• Addition/Subtraction: trivial

• Multiplication:

- of an array by a scalar is easily defined and easily carried out.
- of two arrays is not so straightforward: MATLAB uses two definitions of multiplication:
 - array multiplication (also called element-by-element multiplication)
 - matrix multiplication

• Division and exponentiation MATLAB has two forms on arrays.

- element-by-element operations
- matrix operations
- \rightsquigarrow Remark:

the operation division by a matrix is not defined. In MatLab it is defined but it has other meanings.

Array Operations (Element-by-Element) Vectors and Matrices

Symbol	Operation	Form	Examples
+	Scalar-array addition	A + b	[6,3]+2=[8,5]
-	Scalar-array subtraction	A - b	[8,3]-5=[3,-2]
+	Array addition	A + B	[6,5]+[4,8]=[10,13]
-	Array subtraction	A – B	[6,5]-[4,8]=[2,-3]
.*	Array multiplication	A.*B	[3,5].*[4,8]=[12,40]
./	Array right division	A./B	[2,5]./[4,8]=[2/4,5/8]
.\	Array left division	A.\B	[2,5].\[4,8]=[2\4,5\8]
.^	Array exponentiation	A.^B	[3,5].^2=[3^2,5^2]
			2.^[3,5]=[2^3,2^5]

 $[3,5].^{[2,4]}=[3^{2},5^{4}]$

Matrix Operations

* Matrix multiplication

\ Matrix left division (mldivide)

/ Matrix right division (mrdivide)

Matrix power

' Complex conjugate transpose

C = A*B is the linear algebraic product of the matrices A and B. The number of columns of A must equal the number of rows of B.

 $x = A \setminus B$ is the solution to the equation Ax = B. Matrices A and B must have the same number of rows.

x = B/A is the solution to the equation xA = B. Matrices A and B must have the same number of columns. In terms of the left division operator, $B/A = (A'\setminus B')'$.

 A^B is A to the power B, if B is a scalar. For other values of B, the calculation involves eigenvalues and eigenvectors.

A' is the linear algebraic transpose of A. For complex matrices, this is the complex conjugate transpose.

Matrix division

Backslash or matrix left division $A \setminus B$ It is roughly like INV(A)*B except that it is computed in a different way: $X = A \setminus B$ is the solution to the equation A*X = B computed by Gaussian elimination.

Slash or right matrix division A/B

X = A/B is the solution to the equation X*A = B. It is the matrix division of B into A, which is roughly the same as A*INV(B), except it is computed in a different way. More precisely, $A/B = (B'\setminus A')'$.

Algorithms:

http://www.maths.lth.se/na/courses/NUM115/NUM115-11/backslash.html