FF505
 Computational Science

Matrix Calculus

Marco Chiarandini (marco@imada.sdu.dk)
Department of Mathematics and Computer Science (IMADA)
University of Southern Denmark

- MATLAB, numerical computing vs symbolic computing
- MATLAB Desktop
- Script files
- 1D and 2D arrays
- Plot
- Interacting with matlab
- Matrix vs array operations
- Car market assignment

Other topics:

- matrices and vectors
- solving linear systems
- determinants
- linear transformation
- eigenvalues and eigenvectors
- diagonalization?

Outline

1. Vectors and Matrices

Linear Algebra
Array Operations

Creating Matrices

```
eye(4) % identity matrix
zeros(4) % matrix of zero elements
ones(4) % matrix of one elements
```

```
A=rand (8)
triu(A) % upper triangular matrix
tril(A)
diag(A) % diagonal
```

```
>> [ eye(2), ones(2,3); zeros(2),
    [1:3;3:-1:1] ]
ans =
    10 1 1 1
    0}10111
    0 0 1 2 3
    0 0 3 2 1
```

Can you create this matrix in one line of code?

-5	0	0	0	0	0	0	1	1	1	1
0	-4	0	0	0	0	0	0	1	1	1
0	0	-3	0	0	0	0	0	0	1	1
0	0	0	-2	0	0	0	0	0	0	1
0	0	0	0	-1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	2	0	0	0
1	1	0	0	0	0	0	0	3	0	0
1	1	1	0	0	0	0	0	0	4	0
1	1	1	1	0	0	0	0	0	0	5

Reshaping

```
%% reshape and replication
A = magic(3) % magic square
A = [A [0;1;2]]
reshape(A,[4 3]) % columnwise
reshape(A,[2 6])
v = [100;0;0]
A+v
A + repmat(v,[1 4])
```


Outline

1. Vectors and Matrices

Linear Algebra
Array Operations

Dot and Cross Products

$\operatorname{dot}(\mathrm{A}, \mathrm{B})$ inner or scalar product: computes the projection of a vector on the other. eg. $\operatorname{dot}(\mathrm{Fr}, \mathrm{r})$ computes component of force F along direction r

```
v=1:10
u=11:20
u*v' % inner or scalar product
ui=u+i
ui'
v*ui' % inner product of C^n
norm(v,2)
sqrt(v*v')
```

$\operatorname{cross}(A, B)$ cross product: eg: moment $\mathbf{M}=\mathbf{r} \times \mathbf{F}$

Electrical Networks

Matrix Multiplication

$$
\begin{array}{r}
i_{1}-i_{2}+i_{3}=0 \\
-i_{1}+i_{2}-i_{3}=0 \\
4 i_{1}+2 i_{2}=8 \\
2 i_{2}+5 i_{3}=9
\end{array}
$$

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
4 & 2 & 0 \\
0 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
8 \\
9
\end{array}\right] \quad A \mathbf{x}=\mathbf{b}
$$

node A node B
top loop
bottom loop $A \mathrm{x}=\mathrm{b}$

Chemical Equations

$$
x_{1} \mathrm{CO}_{2}+x_{2} \mathrm{H}_{2} \mathrm{O} \rightarrow x_{3} \mathrm{O}_{2}+x_{4} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

To balance the equation, we must choose $x_{1}, x_{2}, x_{3}, x_{4}$ so that the numbers of carbon, hydrogen, and oxygen atoms are the same on each side of the equation.

$$
\begin{aligned}
x_{1} & =6 x_{4} \\
2 x_{1}+x_{2} & =2 x_{3}+6 x_{4} \\
2 x_{2} & =12 x_{4}
\end{aligned}
$$

carbon atoms
oxygen
hydrogen

Matrix Multiplication

$$
\begin{aligned}
x_{1} & =6 x_{4} \\
2 x_{1}+x_{2} & =2 x_{3}+6 x_{4} \\
2 x_{2} & =12 x_{4}
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -6 \\
2 & 1 & 2 & 6 \\
0 & 2 & 0 & 12
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad A \mathbf{x}=\mathbf{0}
$$

Matrix-Matrix Multiplication

In the product of two matrices A * B, the number of columns in A must equal the number of rows in B.

The product $A B$ has the same number of rows as A and the same number of columns as B. For example

```
>> A=randi(10,3,2) % returns a 3-by-2 matrix containing pseudorandom integer values
        drawn from the discrete uniform distribution on 1:10
A =
    610
    104
    5 8
>> C=randi(10,2,3)*100
C =
        1000900400
        200700 200
>> A*C % matrix multiplication
ans =
    8000 12400 4400
    10800 11800 4800
    600 10100 3600
```

Exercise: create a small example to show that in general, $A B \neq B A$.

Matrix Functions

Eigenvalues and eigenvectors:

```
A = ones(6)
trace(A)
A = A - tril(A)-triu(A,2)
eig(A)
diag(ones(3,1),-1)
[V,D]=eig(diag(1:4))
rank(A) % rank of A
orth(A) % orthonormal basis
```


Visualizing Eigenvalues

```
A=[5/4,0;0,3/4];
eigshow(A) %effect of operator A on unit
    verctor
```


Outline

1. Vectors and Matrices

Linear Algebra
Array Operations

Matrix Operations

```
%% matrix operations
A * C % matrix multiplication
B}=[56;78;910]*100% same dims as 
A .* B % element-wise multiplcation
% A .* C or }A*B\mathrm{ gives error - wrong dimensions
A . - 2
1./B
log(B) % functions like this operate element-wise on vecs or matrices
exp(B) % overflow
abs(B)
```



```
-v % - 1*v
v + ones(1,length(v))
%v+1% same
A' % (conjuate) transpose
```


Matrix and Array Operations

- Matrix operations follow the rules of linear algebra (not compatible with multidimensional arrays).
- Array operations execute element-by-element operations and support multidimensional arrays.
- The period character (.) distinguishes the array operations from the matrix operations.
- Array operations work on corresponding elements of arrays with equal dimensions
- scalar expansion: scalars are expanded into an array of the same size as the other input

Matrix vs Array Operations

- Addition/Subtraction: trivial
- Multiplication:
- of an array by a scalar is easily defined and easily carried out.
- of two arrays is not so straightforward:

MATLAB uses two definitions of multiplication:

- array multiplication (also called element-by-element multiplication)
- matrix multiplication
- Division and exponentiation MATLAB has two forms on arrays.
- element-by-element operations
- matrix operations
\rightsquigarrow Remark:
the operation division by a matrix is not defined. In MatLab it is defined but it has other meanings.

Array Operations (Element-by-Element)

Symbol	Operation	Form	Examples
+	Scalar-array addition	$A+b$	$[6,3]+2=[8,5]$
-	Scalar-array subtraction	A - b	$[8,3]-5=[3,-2]$
+	Array addition	$A+B$	$[6,5]+[4,8]=[10,13]$
-	Array subtraction	A - B	$[6,5]-[4,8]=[2,-3]$
.*	Array multiplication	A.*B	$[3,5] . *[4,8]=[12,40]$
./	Array right division	A./B	$[2,5] . /[4,8]=[2 / 4,5 / 8]$
.$\$ & Array left division & A. $\backslash \mathrm{B}$	$[2,5] . \backslash[4,8]=[2 \backslash 4,5 \backslash 8]$		
.	Array exponentiation	A. ${ }^{-B}$	$[3,5] . \sim 2=[3 \sim 2,5 \sim 2]$
			2. $\wedge[3,5]=[2 \sim 3,2 \sim 5]$
			$[3,5] . \sim[2,4]=\left[3^{\sim} 2,5^{\sim} 4\right]$

Matrix Operations

* Matrix multiplication
$\mathrm{C}=\mathrm{A} * \mathrm{~B}$ is the linear algebraic product of the matrices A and B . The number of columns of A must equal the number of rows of B.

Matrix left division (mldivide)
/ Matrix right division (mrdivide)

- Matrix power
, Complex conjugate transpose
$\mathrm{x}=\mathrm{A} \backslash \mathrm{B}$ is the solution to the equation $A x=B$. Matrices A and B must have the same number of rows.
$\mathrm{x}=\mathrm{B} / \mathrm{A}$ is the solution to the equation $x A=B$. Matrices A and B must have the same number of columns. In terms of the left division operator, $B / A=\left(A ' \backslash B^{\prime}\right)$ '.
$A^{\wedge} B$ is A to the power B, if B is a scalar. For other values of B, the calculation involves eigenvalues and eigenvectors.
A' is the linear algebraic transpose of A. For complex matrices, this is the complex conjugate transpose.

Matrix division

Backslash or matrix left division $A \backslash B$ It is roughly like $\operatorname{INV}(A) * B$ except that it is computed in a different way: $X=A \backslash B$ is the solution to the equation $A * X=B$ computed by Gaussian elimination.

Slash or right matrix division A / B
$X=A / B$ is the solution to the equation $X * A=B$. It is the matrix division of B into A, which is roughly the same as $A * \operatorname{INV}(B)$, except it is computed in a different way. More precisely, $A / B=\left(B^{\prime} \backslash A^{\prime}\right)^{\prime}$.

Algorithms:
http://www.maths.lth.se/na/courses/NUM115/NUM115-11/backslash.html

