
FF505

Computational Science

Control Flow

Marco Chiarandini (marco@imada.sdu.dk)

Department of Mathematics and Computer Science (IMADA)
University of Southern Denmark

ProgrammingOutline

1. Programming

2

ProgrammingAlgorithms and Control Structures
Algorithm: an ordered sequence of instructions that perform some task in a
finite amount of time.

Individual statements, instructions or function calls can be numbered and
executed in sequence, but an algorithm has the ability to alter the order of its
instructions. The order is referred to as control flow.

Three categories of control flow:

Sequential operations

Conditional operations: logical conditions that determine actions.

Iterative operations (loops)

For an imperative or a declarative program a control flow statement is a
statement whose execution results in a choice being made as to which of two
or more paths should be followed.

For non-strict functional languages (like Matlab), functions and language
constructs exist to achieve the same result, but they are not necessarily called
control flow statements (eg, vectorization).

3

ProgrammingRelational Operators

< Less than.
<= Less than or equal to.
> Greater than.
>= Greater than or equal to.
== Equal to.
~= Not equal to.� �

islogical(5~=8)
ans =

1
islogical(logical(5+8))
ans =

1
>> logical(5+8)
ans =

1
>> double(6>8)
ans =

0
>> isnumeric(double(6>8))
ans =

1� �
4

ProgrammingLogical Operators

~ NOT ~A returns an array the same dimension as A;
the new array has ones where A is zero and zeros
where A is nonzero.

& AND A & B returns an array the same dimension as
A and B; the new array has ones where both A
and B have nonzero elements and zeros where
either A or B is zero.

| OR A | B returns an array the same dimension as A
and B; the new array has ones where at least one
element in A or B is nonzero and zeros where A
and B are both zero.

&& Short-Circuit AND Operator for scalar logical expressions. A && B
returns true if both A and B evaluate to true,
and false if they do not.

|| Short-Circuit OR Operator for scalar logical expressions. A || B
returns true if either A or B or both evaluate to
true, and false if they do not.

5

ProgrammingPrecedence

1. Parentheses; evaluated starting with the innermost pair.
2. Arithmetic operators and logical NOT (~); evaluated from left to right.
3. Relational operators; evaluated from left to right.
4. Logical AND.
5. Logical OR.

6

ProgrammingThe if Statement

The if statement’s basic form is� �
if logical expression

statements
end� �

7

ProgrammingThe else Statement

The basic structure for the use of the
else statement is� �
if logical expression

statement group 1
else

statement group 2
end� �

8

Programming

� �
if logical expression 1

if logical expression 2
statements

end
end� �
can be replaced with the more concise program� �
if logical expression 1 & logical expression 2

statements
end� �

9

ProgrammingThe elseif Statement

The general form of the if statement is� �
if logical expression 1

statement group 1
elseif logical expression 2

statement group 2
else

statement group 3
end� �

10

Programmingfor Loops

A simple example of a for loop is� �
for k = 5:10:35

x = k^2
end� �

11

Programmingwhile Loops

� �
while logical expression

statements
end� �
The while loop is used when the
looping process terminates because a
specified condition is satisfied, and
thus the number of passes is not
known in advance.� �
x = 5;
while x < 25

disp(x)
x = 2*x - 1;

end� �

12

Programmingswitch

� �
switch input expression % (can be a

scalar or string).
case value1

statement group 1
case value2

statement group 2
.
.
.
otherwise

statement group n
end� �

� �
switch angle

case 45
disp(’Northeast’)

case 135
disp(’Southeast’)

case 225
disp(’Southwest’)

case 315
disp(’Northwest’)

otherwise
disp(’Direction Unknown’)

end� �

13

ProgrammingControl Flow

if� �
if w(1)==0

% <statement>
elseif w(1)==1

% <statement>
else

% <statement>
end� �
switch� �
method = ’Bilinear’;
switch lower(method)

case {’linear’,’bilinear’}
disp(’Method is linear’)

case ’cubic’
disp(’Method is cubic’)

case ’nearest’
disp(’Method is nearest’)

otherwise
disp(’Unknown method.’)

end� �

for� �
w = [];
z = 0;
is = 1:10
for i=is

w = [w, 2*i] % Same as \/
% w(i) = 2∗i
% w(end+1) = 2∗i

z = z + i;
% break;
% continue;

end
% avoid! same as w = 2∗[1:10], z = sum([1:10]);� �
while� �
w = [];
while length(w) < 3

w = [w, 4];
% break

end� �
14

ProgrammingContinue and Break

The continue statement passes control to the next iteration of the for loop or
while loop in which it appears, skipping any remaining statements in the
body of the loop.
The break statement is used to exit early from a for loop or while loop. In
nested loops, break exits from the innermost loop only.

This will never end� �
while count <= 20

if true
continue

end
count = count + 1;

end� �

This will iterate once and stop� �
while count <= 20

if true
break

end
count = count + 1;

end� �

15

ProgrammingVectorization

MATLAB is optimized for operations involving matrices and vectors.
Vectorization: The process of revising loop-based, scalar-oriented code to use
MATLAB matrix and vector operations

A simple example to create a table of logarithms:
loop-based, scalar-oriented code:� �
x = .01;
for k = 1:1001

y(k) = log10(x);
x = x + .01;

end� �

A vectorized version of the same
code is� �
x = .01:.01:10;
y = log10(x);� �

Some functions are vectorized, hence with vectors must use
element-by-element operators to combine them.
Eg: z = ey sinx, x and y vectors:� �
z=exp(y).*sin(x)� �

16

ProgrammingVectorization

Vectorizing your code is worthwhile for:

Appearance: Vectorized mathematical code appears more like the
mathematical expressions found in textbooks, making the code easier to
understand.

Less Error Prone: Without loops, vectorized code is often shorter. Fewer
lines of code mean fewer opportunities to introduce programming errors.

Performance: Vectorized code often runs much faster than the
corresponding code containing loops.

17

ProgrammingPreallocation

Another speedup techinque is preallocation. Memory allocation is slow.� �
r = zeros(32,1);
for n = 1:32

r(n) = rank(magic(n));
end� �
Without the preallocation MATLAB would enlarge the r vector by one
element each time through the loop.

18

	Programming

