DM559/DM545 -- Linear and Integer Programming

Schedule

DM559

View Section H1.
Week56789101112131415161718192021
Tir, 10-12I (Fælles)
(U24)
I (Fælles)
(U31)
I (Fælles)
(U31)
I (Fælles)
(U20)
I (Fælles)
(U20)
TE (H1)
(U146)
Tir, 14-16I (Fælles)
(U51)
Ons, 10-12TL (H1)
(IMADA ComputerLab)
TL (H1)
(IMADA ComputerLab)
TL (H1)
(IMADA ComputerLab)
TL (H1)
(IMADA ComputerLab)
Ons, 14-16I (Fælles)
(U20)
I (Fælles)
(U55)
I (Fælles)
(U20)
I (Fælles)
(U55)
I (Fælles)
(U55)
I (Fælles)
(U55)
I (Fælles)
(U20)
I (Fælles)
(U20)
I (Fælles)
(U20)
I (Fælles)
(U20)
I (Fælles)
(U20)
I (Fælles)
(U20)
I (Fælles)
(U20)
I (Fælles)
(U20)
Tor, 08-10TE (H1)
(U153)
Tor, 10-12TE (H1)
(U153)
Tor, 12-14TE (H1)
(U11)
TE (H1)
(U44)
TE (H1)
(U142)
TE (H1)
(U143)
TE (H1)
(U142)
TE (H1)
(U44)
TE (H1)
(U44)
TE (H1)
(U142)
TE (H1)
(U142)
TE (H1)
(U142)
TE (H1)
(U142)
TE (H1)
(U142)
TE (H1)
(U142)
Fre, 10-12TE (H1)
(U146)
I (Fælles)
(U20)
I (Fælles)
(U48A)
I (Fælles)
(U20)
I (Fælles)
(U48A)
TE (H1)
(U10)
Section H2 (cancelled by Monday of week 14. Go to H1 or M1).

DM545

View Section M1.
Week12131415161718192021
Tir, 10-12I (Fælles)
(U20)
I (Fælles)
(U20)
Ons, 08-10TL (M1)
(IMADA ComputerLab)
TL (M1)
(IMADA ComputerLab)
TE (M1)
(U154)
TE (M1)
(U154)
TE (M1)
(U154)
Ons, 14-16I (Fælles)
(U140)
I (Fælles)
(U140)
I (Fælles)
(U20)
I (Fælles)
(U20)
I (Fælles)
(U20)
I (Fælles)
(U20)
I (Fælles)
(U20)
I (Fælles)
(U20)
Fre, 10-12I (Fælles)
(U150)
I (Fælles)
(U48A)
I (Fælles)
(U20)
I (Fælles)
(U48A)
Fre, 14-16TE (M1)
(U154)
TE (M1)
(U154)
TE (M1)
(U154)
TE (M1)
(U154)
TE (M1)
(U154)
TE (M1)
(U154)
TE (M1)
(U154)

Classes (introduction + exercises)

Linear Algebra Part

  Date Topic and Slides Literature and Assignments
I1 31.01 Introduction. Preliminaries [AH pp 1-8]
I2 01.02 Matrices and Vectors [AR s 1.3-1.4] or [AH s 1.1-1.9] or [Le s 1.3-1.4]
E1 01.02 Matrix operations Sheet 1; sol
I3 08.02 Geometric Insight [AR s 3.1-3.4] or [AH s 1.9-1.14]
E2 07.02 Computer Lab: Python and Linear Algebra. Tutorial. Networkx. Sheet 2; sol
E3 10.02 Geometric Interpretation Sheet 3; sol
I4 15.02 Systems of Linear Equations [AR s 1.1-1.2] or [AH c 2] or [Le s 1.1-1.2, 1.5]
E4 15.02 Linear Systems Sheet 4; sol
E5 16.02 Linear Systems Sheet 5; sol
I5 21.02 Elementary Matrices, Determinants, Matrix Inverse [AR s 1.4-1.7, c 2] or [AH c 3] or [Le s 1.5, 2.1-2.3]
I6 22.02 Rank, Range and Vector Spaces.
Numerical methods (LU + iterative)
[AR s 4.1-4.2, 9.1] or [AH c 4] or [Le s 3.1,3.2,3.6]
E6 22.02 Determinants, Matrix Inverse Sheet 6 sol
I7 28.02 Linear Independency, Bases, Dimensions [AR s 4.3-4.5] or [AH c 5,6] or [Le s 3.3,3.4,3.6]
I8 01.03 Linear Transformations, Change of Basis [AR 4.6,4.9-4.10, 8.1,8.3,8.4] or [AH c7] or [Le 4.1,4.2,3.5]
[Assignment 0.1; sol]
E7 01.03 Applications  
E8 07.03 Vector spaces, bases, change of basis, linear transformations Sheet 8; sol
E9 08.03 Computer Lab. More on arrays in Python. Sparse Matrices Sheet 9; sol
E10 09.03    
I9 15.03 Eigenvalues and Eigenvectors [AR c 5.1,5.2] or [AH c 8,9] or [Le s 4.3, s 6.1,6.3]
[Assignment 0.2; sol]
E11 15.03 Eigenvalues, Eigenvectors, Diagonalization Sheet 11; sol

Linear and Integer Programming Part

  Date Topic and Slides Literature and Assignments
E0 w11 Python and Linear Algebra Review (only for DM545) Assignment 1.0; sol
I1 mar22 Introduction - Linear Programming, Notation [Slides] [ Notes ]
    Resource allocation in factory planning. Diet problem. [L1,L2] [HL ch 1,2,3]
    Linear programming problems and geometrical interpretation. [MG ch 1,2, Appendix] [L3]
I2 mar24 Linear Programming, towards the Simplex Method [Slides] [ Notes ]
    History. Fourier & Moutzkin elimination [Da] [ wiki ]
    Notation: polyhedral analysis [MG ch 4] [HL sc 5.1] [L5]
    Linear programming theory, Fundamental theorem [L4,L6]
    Gaussian Elimination [ wiki ] [L4]
E1 w12 LP Modeling Sheet 1; sol
I3 mar29 Simplex Method [Slides] [ Notes ]
    Simplex method, tableaux and dictionaries [MG ch 5] [HL sc 4.1-4.4]
E2 w13 Simplex Sheet 3; sol
E3 w13 LP Software (note: in IMADA Computer Lab!) Sheet 2;
I4 apr5 Exception Handling and Initialization [Slides] [ Notes ]
    Exception handling and degeneracies in simplex method. Pivot rules [MG ch 5], [HL sc 4.5]
I5 apr7 Duality [Slides] [ Notes ]
    Duality: bounding and multipliers approach [HL sc 6.1-6.4]
    Weak/strong duality theorems and complementary slackness theorem [MG sc 6.1-6.3]
      [Assignment 1.1; sol ]
E4 w14 Exception Handling Sheet 4; sol
I6 apr19 More on Duality [Slides] [ Notes ]
    Geometric Interpretation, Duality by Lagrangian relaxation [Ch ch 10] [CL ch 2]
    Dual Simplex, Sensitivity Analysis [Va sc 7.1] [HL sc 7.1, 4.7]
I7 apr21 Revised Simplex Method [Slides] [ Notes ]
      [HL ch 5] [Va 6.1-6.5]
      [ Ch ch 7 ]
E5 w16 Duality Sheet 5; sol
8 apr26 Integer Programming - Modeling Examples [Slides] [MG ch 3] [Wo ch 1]
E6 w17 Lab session (note: in IMADA Computer Lab!)
Sensitivity Analysis and Revised Method
Sheet 6; sol
E7 w17 IP Modeling Sheet 7; sol
I9 may2 Integer Programming - More on Modeling, Formulations [Slides] [Wi ch 9.1-9.5] [Wo ch 2] [L8]
I10 may3 Relaxations, Well Solved Problems [Slides] [Wo sec. 3.2-3.5] [CL ch 7]
    Convex hull description, Total unimodular matrices  
I11 may9 Network Flows [Slides] [CL ch 4,6,7]
I12 may10 Network Flows (slides lec 11) [ Notes ]
    Min cost flow, Maximum flow, Shortest path, multicommodity flow [AOM sec 1.2]
    Duality in network flows [ Assignment 1.2; sol ]
E8 w18 More on IP modeling Sheet 8; sol
I13 may17 Cutting Planes + Branch and Bound [Slides] [Wo ch 7, 8.1-8.6]
    Valid Inequalities. Chvatal Gomory cuts. [Wo ch 7]
    Cutting plane algorithm. Gomory's fractional cutting plane algorithm  
    Branching strategies  
I14 may19 Branch and Bound + Traveling Salesman Problem  
E9 w19 Yet more on IP modeling + well solved problems Sheet 9; sol
E10 w20 Network flows Sheet 10; sol
E11 w21 Cutting Planes and Branch and Bound Sheet 11; sol
E12 w21 Exam rehearsal Sheet 12; sol

Literature

Linear Algebra Part:

Linear and Integer Programming Part:

Assessment

  • A number of obligatory assignments during the course with pass/fail assessment by the teacher. The assignments are practice oriented and must be passed to attend the written exam.
  • Written exam, 4 hours, Danish 7 grade scale, external examiner
  • Instructions for the written exam
  • The written exam is scheduled for the 13th of June from 10:00 to 14:00 in U151, U152, U153.
  • Reexam: 16th of August (written). Admission is allowed to only those who have passed the obligatory assignment.

Past Exams

Author: Marco Chiarandini

Created: 2017-10-26 Thu 19:13

Validate